[本實驗室] [量化方法] [計算化學] [動力學] [鈍氣] [催化] [材料] [生化] [其他化學] [天文學] [科普] [其他科學] [重要連結] [近期有趣]
[本實驗室]
[量化方法]
Density-functional thermochemistry. III. The role of exact exchange
Axel D. Becke
J. Chem. Phys. 1993, 98, 5648. [PDF] B3PW91 paper
Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch
J. Chem. Phys. 1994, 98, 11623. [PDF] B3LYP paper
Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing
Axel D. Becke
J. Chem. Phys. 1996, 104, 1040. [PDF] B95, original B1B95 paper
Benchmark calculations with correlated molecular wave functions. X. Comparison with "exact" MP2 calculations on Ne, HF, H2O, and N2
Angela K. Wilson and Thom H. Dunning, Jr.
J. Chem. Phys. 1997, 106, 8718. [PDF]
Basis-Set Extrapolation
Donald G. Truhlar
Chem. Phys. Lett. 1998, 294, 45-48. [PDF]
Optimized density functionals from the extended G2 test set
Hartmut L. Schmider and Axel D. Becke
J. Chem. Phys. 1998, 108, 9624. [PDF] B98 paper
Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters:
The mPW and mPW1PW models
Carlo Adamo and Vincenzo Barone
J. Chem. Phys. 1998, 108, 664-675. [PDF] original MPWPW91, MPW1PW91 paper
Geometry Optimization with an Infinite Basis Set
Yao-Yuan Chuang, Donald G. Truhlar
J. Phys. Chem. A 1999, 103, 651-652. [PDF]
Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions: The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions
Y. Zhao and D. G. Truhlar
Journal of Physical Chemistry A 2004, 108, 6908-6918. [PDF file] [Supporting Information]
Development of density functionals for thermochemical kinetics
A. Daniel Boese and Jan M. L. Martin
J. Chem. Phys. 2004, 121, 3405-3416. [PDF] BMK (Boses and Martin for Kinetics) paper
Benchmark Database of Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions and Their Use to Test Density Functional Theory
Y. Zhao, N. González-García, and D. G. Truhlar
Journal of Physical Chemistry A 2005, 109, 2012-2018. [PDF file] [Supporting Information]
Databases for Transition Element Bonding: Metal-Metal Bond Energies and Bond Lengths and Their Use To Test Hybrid, Hybrid Meta, and Meta Density Functionals and Generalized Gradient Approximations
Nathan E. Schultz, Yan Zhao, and Donald G. Truhlar
J. Phys. Chem. A 2005, 109, 4388-4403 [PDF file]
Multi-Coefficient Extrapolated Density Functional Theory for Thermochemistry and Thermochemical Kinetics
Y. Zhao, B. J. Lynch, and D. G. Truhlar
Physical Chemistry Chemical Physics 2005, 7, 43-52. [PDF file] [Supporting Information]
Density Functionals for Inorganometallic and Organometallic Chemistry
Nathan E. Schultz, Yan Zhao, and Donald G. Truhlar
J. Phys. Chem. A 2005, 109, 11127-11143. [PDF]
Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions
Yan Zhao, Nathan E. Schultz, and D. G. Truhlar
J. Chem. Phys. 2005, 123, 161103. [PDF] (M05 paper)
Design of Density Functionals That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Nonbonded Interactions
Yan Zhao and Donald G. Truhlar
J. Phys. Chem. A 2005, 109, 5656-5667. [PDF] (PW6B95 and PWB6K functionals)
Popular Theoretical Methods Predict Benzene and Arenes To Be Nonplanar
Damian Moran, Andrew C. Simmonett, Franklin E. Leach III, Wesley D. Allen,Paul v. R. Schleyer, and Henry F. Schaefer III
J. Am. Chem. Soc. 2006, 128, 9342-9343. [PDF]
Comparative DFT Study of van der Waals Complexes: Rare-Gas Dimers, Alkaline-Earth Dimers, Zinc Dimer, and Zinc-Rare-Gas Dimers
Yan Zhao and Donald G. Truhlar
J. Phys. Chem. A 2006, 110, 5121-5129. [PDF]
Advances in methods and algorithms in a modern quantum chemistry program package
Yihan Shao et al.
Phys. Chem. Chem. Phys., 2006, 8, 3172-3191. [PDF] (QChem 3.0 paper) [Q-Chem 3.1 manual]
Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions
Yan Zhao, Nathan E. Schultz, and Donald G. Truhlar
J. Chem. Theory Comput. 2006, 2, 364-382. [PDF] (M05-2X paper)
The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry
Filipp Furche, John P. Perdew
J. Chem. Phys. 2006, 124, 044103. [PDF]
Comparative assessment of density functional methods for 3d transition-metal chemistry
Yan Zhao and Donald G. Truhlar
J. Chem. Phys. 2006, 124, 224105. [PDF]
A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
Yan Zhao and Donald G. Truhlar
J. Chem. Phys. 2006,125, 194101. [PDF] (M06-L paper)
Density Functional for Spectroscopy: No Long-Range Self-Interaction Error, Good Performance for Rydberg and Charge-Transfer States, and Better Performance on Average than B3LYP for Ground States
Yan Zhao and Donald G. Truhlar
J. Phys. Chem. A 2006, 110, 13126-13130. [PDF] (M06-HF paper)
A Density Functional That Accounts for Medium-Range Correlation Energies in Organic Chemistry
Yan Zhao and Donald G. Truhlar
Org. Lett. 2006, 8, 5753-5755. [PDF]
Semiempirical hybrid density functional with perturbative second-order correlation
Stefan Grimme
J. Chem. Phys. 2006, 124, 034108. [PDF] (B2-PLYP paper)
Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects
Tobias Schwabe and Stefan Grimme
Phys. Chem. Chem. Phys. 2006, 8, 4398–4401 [PDF] (MPW2-PLYP paper)
Representative Benchmark Suites for Barrier Heights of Diverse Reaction Types and Assessment of Electronic Structure Methods for Thermochemical Kinetics
Jingjing Zheng, Yan Zhao, and Donald G. Truhlar
J. Chem. Theory Comput. 2007, 3, 569-582. [PDF] [Supporting Information]
Performance of density functionals for first row transition metal systems
Kasper P. Jensen, Björn O. Roos and Ulf Ryde
J. Chem. Phys. 2007, 126, 014103. [PDF]
The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06 Functionals and Twelve Other Functionals
Yan Zhao and Donald G. Truhlar
Theor. Chem. Acc. 2008, 120, 215. [PDF] (M06-2X paper)
Double-Hybrid Functionals for Thermochemical Kinetics
Alex Tarnopolsky, Amir Karton, Rotem Sertchook, Dana Vuzman, and Jan M. L. Martin
J. Phys. Chem. A 2008, 112, 3-8. [PDF]
How Well Can New-Generation Density Functionals Describe the Energetics of Bond-Dissociation Reactions Producing Radicals?
Yan Zhao and Donald G. Truhlar
J. Phys. Chem. A 2008, 112, 1095-1099. [PDF]
Semiempirical Double-Hybrid Density Functional with Improved Description of Long-Range Correlation
Tobias Benighaus, Robert A. DiStasio, Jr., Rohini C. Lochan, Jeng-Da Chai, and Martin Head-Gordon
J. Phys. Chem. A 2008, 112, 2702-2712. [PDF]
Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions
Yan Zhao and Donald G. Truhlar
J. Chem. Theory Comput. 2008, 4, 1849-1868. (M08 paper) [PDF]
Highly Accurate First-Principles Benchmark Data Sets for the Parametrization and Validation of Density Functional and Other Approximate Methods. Derivation of a Robust, Generally Applicable, Double-Hybrid Functional for Thermochemistry and Thermochemical Kinetics
Amir Karton, Alex Tarnopolsky, Jean-François Lamère, George C. Schatz, and Jan M. L. Martin
J. Phys. Chem. A 2008, 112, 12868-12886. [PDF] (B2GP-PLYP paper)
Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
Aleksandr V. Marenich, Christopher J. Cramer,* and Donald G. Truhlar
J. Phys. Chem. B 2009, 113, 6378–6396. [PDF] (SMD paper)
DSD-BLYP: A General Purpose Double Hybrid Density Functional Including Spin Component Scaling and Dispersion Correction
Sebastian Kozuch, David Gruzman, and Jan M. L. Martin
J. Phys. Chem. C 2010, 114, 20801–20808. [PDF]
M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics
Roberto Peverati and Donald G. Truhlar
J. Phys. Chem. Lett. 2012, 3, 117-124. [PDF]
Basis Sets
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
Thom H. Dunning, Jr.
J. Chem. Phys. 1989, 90, 1007 [PDF]
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
Rick A. Kendall, Thom H. Dunning, Jr., Robert J. Harrison
J. Chem. Phys. 1992, 96, 6796 [PDF]
Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon
David E. Woon and Thom H. Dunning, Jr.
J. Chem. Phys. 1993, 98, 1358 [PDF]
The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water
David Feller
J. Chem. Phys. 1993, 98, 7060-7071 [PDF]
Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties
David E. Woon and Thom H. Dunning, Jr
J. Chem. Phys. 1994, 100, 2975 [PDF] [He diffuse functions]
Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon
David E. Woon and Thom H. Dunning, Jr.
J. Chem. Phys. 1995, 103, 4572 [PDF] [cc-pCVXZ basis set]
Ab initio total atomization energies of small molecules-towards the basis set limit
Jan M. L. Martin
Chem. Phys. Lett. 1996, 259, 669-678. [PDF]
Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton
Angela K. Wilson, David E. Woon, Kirk A. Peterson, and Thom H. Dunning, Jr.
J. Chem. Phys. 1999, 110, 7667 [PDF]
Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited
Thom H. Dunning, Jr., Kirk A. Peterson, and Angela K. Wilson
J. Chem. Phys. 2001, 114, 9244 [PDF] [cc-pV(n+d)Z basis set]
Polarization consistent basis sets: Principles
Frank Jensen
J. Chem. Phys. 2001, 115, 9113 [PDF] [pc-n basis set]
Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited
Kirk A. Peterson, Thom H. Dunning, Jr.
J. Chem. Phys. 2002, 117, 10548 [PDF] [cc-pwCVnZ basis set]
Polarization consistent basis sets. II. Estimating the Kohn–Sham basis set limit
Frank Jensen
J. Chem. Phys. 2002, 116, 7372 [PDF]
Polarization consistent basis sets. III. The importance of diffuse functions
Frank Jensen
J. Chem. Phys. 2002, 117, 9234 [PDF] [aug-pc-n basis set]
The role of the basis set: Assessing density functional theory
A. Daniel Boese and Jan M. L. Martin, Nicholas C. Handy
J. Chem. Phys. 2003, 119, 3005 [PDF]
Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc–Zn
Nikolai B. Balabanov and Kirk A. Peterson
J. Chem. Phys. 2005, 123, 064107 [PDF]
The extrapolation of one-electron basis sets in electronic structure calculations: How it should work and how it can be made to work
David W. Schwenke
J. Chem. Phys. 2005, 122, 014107 [PDF]
Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations”
Amir Karton, Jan M.L. Martin
Theor. Chem. Acc. 2006, 115, 330–333 [PDF]
Polarization Consistent Basis Sets. 4: The Elements He, Li, Be, B, Ne, Na, Mg, Al, and Ar
Frank Jensen
Review
Quantum Chemistry and Molecular Process
Martin Head-Gordon
J. Phys. Chem. A 1996, 100, 13213-13225 [PDF]
Electronic Structure and Properties of Solids
Jeremy K. Burdett
J. Phys. Chem. 1996, 100, 13263-13274 [PDF]
A Journey from Generalized Valence Bond Theory to the Full CI Complete Basis Set Limit
George A. Petersson, Michael Frisch
J. Phys. Chem. A 2000, 104, 2183-2190 [PDF]
A Road Map for the Calculation of Molecular Binding Energies
Thom H. Dunning, Jr.
J. Phys. Chem. A 2000, 104, 9062-9080 [PDF]
Multidimensional Tunneling, Recrossing, and the Transmission Coefficient for Enzymatic Reactions
J. Pu, J. Gao, and D. G. Truhlar
Chemical Reviews 2006, 106, 3140-3169 [PDF]
Modeling of Bimolecular Reactions
A. Fernández-Ramos, J. A. Miller, S. J. Klippenstein, and D. G. Truhlar
Chemical Reviews 2006, 106, 4518-4584 [PDF]
The Concept of Resonance
Donald G. Truhlar
J. Chem. Educ. 2006, 84, 781-782 [PDF]
QM/MM: what have we learned, where are we, and where do we go from here?
Hai Lin, Donald G. Truhlar
Theor. Chem. Acc. 2007, 117, 185–199 [PDF]
[計算化學]
The six-bond bound
Gernot Frenking and Ralf Tonner
Nature 2007, 446, 276 [PDF]
Reaching the Maximum Multiplicity of the Covalent Chemical Bond
Bjorn O. Roos, Antonio C. Borin, and Laura Gagliardi
Angew. Chem. Int. Ed. 2007, 46, 1469 –1472 [PDF]
[動力學]
Steric Effects and Solvent Effects in Ionic Reactions
Colleen K. Regan, Stephen L. Craig, John I. Brauman
Science 2002, 295, 2245-2247 [PDF]
D. G. Truhlar's Special Issue
J. Phys. Chem. A 2006, 110
Autobiography
Students
Publication
Rozen’s Epoxidation Reagent, CH3CN.HOF: A Theoretical Study of Its Structure, Vibrational Spectroscopy, and Reaction Mechanism
Rotem Sertchook, A. Daniel Boese, Jan M. L. Martin
J. Phys. Chem. A 2006, 110, 8275 [PDF]
A Theoretical Study of the Formation of the Aminoacetonitrile Precursor of Glycine on Icy Grain Mantles in the Interstellar Medium
Denise M. Koch, Ce´line Toubin, Gilles H. Peslherbe, and James T. Hynes
J. Phys. Chem. C 2008, 112, 2972-2980 [PDF]
See also C&EN News, June 18, 2008, p. 58.
A Computational Study of the Hydration of the OH Radical
S. Hamad, S. Lago, and J. A. Mejı´as
J. Phys. Chem. A 2002, 106, 9104-9113 [PDF]
Role of Hydrogen-Bonded Intermediates in the Bimolecular Reactions of the Hydroxyl Radical
Ian W. M. Smith, and A. R. Ravishankara
J. Phys. Chem. A 2002, 106, 4798-4807 [PDF]
Transition state dynamics of the OH + H2O hydrogen exchange reaction studied by dissociative photodetachment of H3O2—
Hans-Jurgen Deyerl, A. Khai Luong, Todd G. Clements and Robert E. Continetti
Faraday Discuss. 2000, 115, 147-160. [PDF]
Infrared Measurements and Calculations on H2O+HO
Paul D. Cooper, Henrik G. Kjaergaard, Vaughan S. Langford, Allan J. McKinley, Terence I. Quickenden,and Daniel P. Schofield
J. Am. Chem. Soc. 2003, 125, 6048 [PDF]
Rotational Spectrum and Hydrogen Bonding of the H2O-HO Radical Complex
Yasuhiro Ohshima, Kazuya Sato, Yoshihiro Sumiyoshi, and Yasuki Endo
J. Am. Chem. Soc. 2005, 127, 1108 [PDF]
Isotope Specific Kinetics of Hydroxyl Radical (OH) with Water (H2O): Testing Models of Reactivity and Atmospheric Fractionation
Manvendra K. Dubey,* Ralf Mohrschladt,† Neil M. Donahue, and James G. Anderson
J. Phys. Chem. A 1997, 101, 1494 [PDF]
High-level ab initio studies of the electronic excited states of the hydroxyl radical and water–hydroxyl complex
Daniel P. Schofield and Henrik G. Kjaergaard
J. Chem. Phys. 2004, 120, 6930 [PDF]
The lowest 2A' excited state of the water-hydroxyl complex
T. Daniel Crawford, Micah L. Abrams, Rollin A. King, Joseph R. Lane, Daniel P. Schofield, Henrik G. Kjaergaard
J. Chem. Phys. 2006, 125, 204302 [PDF]
Do Hydroxyl Radical-Water Clusters, OH(H2O)n, n =1-5, Exist in the Atmosphere?
Marco A. Allodi, Meghan E. Dunn, Jovan Livada, Karl N. Kirschner,* and George C. Shields
J. Phys. Chem. A 2006, 110, 13283-13289 [PDF]
On the Determination of Monomer Dissociation Energies of Small Water Clusters from Photoionization Experiments
Shawn M. Kathmann,* Gregory K. Schenter, and Sotiris S. Xantheas
J. Phys. Chem. A 2008, 112, 1851 [PDF]
Density Functional Study of Methyl Radical Association Kinetics
Jingjing Zheng, Shuxia Zhang, and Donald G. Truhlar
J. Phys. Chem. A 2008, 112, 11509–11513 [PDF]
Calculations Predict Rapid Tunneling by Carbon from the Vibrational Ground State in the Ring Opening of Cyclopropylcarbinyl Radical at Cryogenic Temperatures
Ayan Datta, David A. Hrovat, and Weston Thatcher Borden
J. Am. Chem. Soc. 2008, 130, 6684-6685 [PDF]
[鈍氣]
Helium Chemistry: Theoretical Predictions and Experimental Challenge
Wolfram Koch, Gernot Frenking, Jurgen Gauss, Dieter Cremer, and Jack R. Collins
J. Am. Chem. Soc. 1987, 109, 5917-5934 [PDF]
Noble Gas Complexes with BeO: Infrared Spectra of Ng-BeO (Ng = Ar, Kr, Xe)
Craig A. Thompson and Lester Andrews
J. Am. Chem. Soc. 1994, 116, 423-424 [PDF]
A Chemical Compound Formed from Water and Xenon: HXeOH
Mika Pettersson, Leonid Khriachtchev, Jan Lundell, and Markku Rasanen
J. Am. Chem. Soc. 1999, 121, 11904-11905 [PDF]
New Rare-Gas-Containing Neutral Molecules
Mika Petterson, Jan Lundell, and Markku Rasanen
Eur. J. Inorg. Chem. 1999, 729-737 [PDF]
Nobless Oblige
Pekka Pyykko
Science 2000, 290, 64-65 [HTML]
Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe42+(Sb2F11-)2
Stefan Seidel and Konrad Seppelt
Science 2000, 290, 117-118 [PDF]
FBeNg+ (Ng=He, Ne, Ar): Suitable Cations for Salts of the Lightest Noble Gases?
Massimiliano Aschi, Felice Grandinetti
Angew. Chem. Int. Ed. 2000, 39, 1690-1692 [PDF]
Prediction of a Metastable Helium Compound: HHeF
Ming Wah Wong
J. Am. Chem. Soc. 2000, 122, 6289-6290 [PDF]
A stable argon compound
Leonid Khriachtchev, Mika Pettersson, Nino Runeberg, Jan Lundell, Markku Rasanen
Nature 2000, 406, 874-876 [PDF]
A theoretical study of HArF, a newly observed neutral argon compound
Nino Runeberg, Mika Pettersson, Leonid Khriachtchev, Jan Lundell, and Markku Rasanen
J. Chem. Phys. 2001, 114, 836-841 [PDF]
A More Stable Configuration of HArF in Solid Argon
Leonid Khriachtchev, Mika Pettersson, Antti Lignell, and Markku Rasanen
J. Am. Chem. Soc. 2001, 123, 8610-8611 [PDF]
A Renaissance in Noble Gas Chemistry
Karl O. Christe
Angew. Chem. Int. Ed. 2001, 40, 1419-1421 [PDF]
HKrF in solid krypton
Mika Pettersson, Leonid Khriachtchev, Antti Lignell, and Markku Rasanen, Z. Bihary, R. B. Gerber
J. Chem. Phys. 2002, 116, 2508-2515 [PDF]
Noble Gas-Actinide Compounds: Complexation of the CUO Molecule by Ar, Kr, and Xe Atoms in Noble Gas Matrices
Jun Li, Bruce E. Bursten, Binyong Liang, Lester Andrews
Science 2002, 295, 2242-2245 [PDF]
Reactions of Ground State and Electronically Excited Atoms of Main Group Elements: a Matrix Perspective
Hans-Jorg Himmel, Anthony J. Downs, and Tim M. Greene
Chem. Rev. 2002, 102, 4191-4241 [PDF]
Intermolecular Complexes of HXeOH with Water: Stabilization and Destabilization Effects
Alexander V. Nemukhin, Bella L. Grigorenko, Leonid Khriachtchev, Hanna Tanskanen, Mika Pettersson, and Markku Rasanen
J. Am. Chem. Soc. 2002, 124, 10706-10711 [PDF]
Theoretical study of decomposition pathways for HArF and HKrF
Galina M. Chaban , Jan Lundell, R. Benny Gerber
Chem. Phys. Lett. 2002, 364, 628. [PDF]
Noble Gas-Actinide Complexes of the CUO Molecule with Multiple Ar, Kr, and Xe Atoms in Noble-Gas Matrices
Lester Andrews, Binyong Liang, Jun Li, and Bruce E. Bursten
J. Am. Chem. Soc. 2003, 125, 3126-3139 [PDF]
Fluorine-Free Organoxenon Chemistry: HXeCCH, HXeCC, and HXeCCXeH
Leonid Khriachtchev, Hanna Tanskanen, Jan Lundell, Mika Pettersson, Harri Kiljunen, and Markku Rasanen
J. Am. Chem. Soc. 2003, 125, 4696-4697 [PDF]
Experimental Evidence for the Formation of HXeCCH: The First Hydrocarbon with an Inserted Rare-Gas Atom
Vladimir I. Feldman, Fedor F. Sukhov, Aleksei Yu. Orlov, and Irina V. Tyulpina
J. Am. Chem. Soc. 2003, 125, 4698-4699 [PDF]
Fluorine-Free Organoxenon Chemistry: HXeCCH, HXeCC, and HXeCCXeH
Leonid Khriachtchev, Hanna Tanskanen, Jan Lundell, Mika Pettersson, Harri Kiljunen, and Markku Rasanen
J. Am. Chem. Soc. 2003, 125, 4696-4697 [PDF]
Stable Compounds of the Lightest Noble Gases: A Computational Investigation of RNBeNg (Ng = He, Ne, Ar)
Paola Antoniotti, Nicoletta Bronzolino and Felice Grandinetti
J. Phys. Chem. 2003, 107, 2974-2980 [PDF]
A Gate to Organokrypton Chemistry: HKrCCH
Leonid Khriachtchev, Hanna Tanskanen, Arik Cohen, R. Benny Gerber, Jan Lundell, Mika Pettersson, Harri Kiljunen, and Markku Rasanen
J. Am. Chem. Soc. 2003, 125, 6876-6877 [PDF]
Chemical Compounds Formed from Diacetylene and Rare-Gas Atoms: HKrC4H and HXeC4H
Hanna Tanskanen, Leonid Khriachtchev, Jan Lundell, Harri Kiljunen, and Markku Rasanen
J. Am. Chem. Soc. 2003, 125, 16361-16366 [PDF]
First compounds with argon–carbon and argon–silicon chemical bonds
Arik Cohen, Jan Lundell, R. Benny Gerber
J. Chem. Phys. 2003, 119, 6415-6417 [PDF]
A study on stabilization of HHeF molecule upon complexation with Xe atoms
Antti Lignell, Leonid Khriachtchev a, Markku Rasanen, Mika Pettersson
Chem. Phys. Lett. 2004, 390, 256 [PDF]
An ab initio study of the noble gas compound HKrCl
Scott Yockel, James J. Seals III, Angela K. Wilson
Chem. Phys. Lett. 2004, 393, 448 [PDF]
On the stability of HKrOH: a theoretical study
Galina M. Chaban
Chem. Phys. Lett. 2004, 395, 182 [PDF]
Formation of Novel Rare-Gas Molecules in Low-Temperature Matrices
R. B,. Gerber
Annu. Rev. Phys. Chem. 2004, 55, 55. [PDF]
Theoretical Prediction of Chemically Bound Compounds Made of Argon and Hydrocarbons
Li Sheng, Arik Cohen, and R. Benny Gerber
J. Am. Chem. Soc. 2006, 128, 7156-7157 [PDF]
Neutral Helium Compounds: Theoretical Evidence for a Large Class of Polynuclear Complexes
Stefano Borocci, Nicoletta Bronzolino, and Felice Grandinetti
Chem. Eur. J. 2006, 12, 5033-5042 [PDF]
Insertion of Noble Gas Atoms into Cyanoacetylene: An ab Initio and Matrix Isolation Study
Leonid Khriachtchev, Antti Lignell, Hanna Tanskanen, Jan Lundell, Harri Kiljunen, and Markku Rasanen
J. Phys. Chem. A 2006, 110, 11876-11885. [PDF]
XeOF2, F2OXeNCCH3, and XeOF2.nHF: Rare Examples of Xe(IV) Oxide Fluorides
David S. Brock, Vural Bilir, He´ le`ne P. A. Mercier, and Gary J. Schrobilgen
J. Am. Chem. Soc. 2007, 129, 3598-3611 [PDF]
Atypical compounds of gases, which have been called ‘noble’
Wojciech Grochala
Chem. Soc. Rev. 2007, 36, 1632-1655. [PDF]
Noble Gas Anions: A Theoretical Investigation of FNgBN- (Ng = He-Xe)
Paola Antoniotti, Stefano Borocci, Nicoletta Bronzolino, Patrizio Cecchi, and Felice Grandinetti
J. Phys. Chem. A 2007, 111, 10144-10151. [PDF]
Experimental and Computational Study of HXeY· · ·HX Complexes (X, Y ) Cl and Br): An Example of Exceptionally Large Complexation Effect
Antti Lignell, Jan Lundell, Leonid Khriachtchev, and Markku Rasanen
J. Phys. Chem. A 2008, 112, 5486-5494. [PDF]
Noble-Gas Hydrides: New Chemistry at Low Temperatures
Leonid Khriachtchev, Markku Räsänen, and R. Benny Gerber
Acc. Chem. Res., 2009, 42, 183-191. [PDF]
HArF in Solid Argon Revisited: Transition from Unstable to Stable Configuration
Anastasia V. Bochenkova, Vladimir E. Bochenkov, and Leonid Khriachtchev
J. Phys. Chem. A, Article ASAP [PDF]
[催化]
[材料]
Toxic Potential of Materials at the Nanolevel
Andre Nel, Tian Xia, Lutz Madler, Ning Li
Science 3 February 2006:Vol. 311. no. 5761, p. 622-627 [PDF]
[生化]
Progress in Modeling of Protein Structures and Interactions
Ora Schueler-Furman, Chu Wang, Phil Bradley, Kira Misura, David Baker*
Science 28 October 2005:Vol. 310. p. 638-642 [PDF]
[其他化學]
It's official: IAU demotes Pluto
Francis Reddy
Astronomy Newsletter 08/25/06 [HTML]
A new molecular factory
Sun Kwok
NATURE|Vol 447|28 June 2007 [PDF]
Alien Planetary System Looks a Lot Like Home
RICHARD A. KERR
SCIENCE VOL 319, P.885, 15 FEBRUARY 2008 [PDF]
[科普]
Quantum Wonderland
IAN OSBORNE AND ROBERT COONTZ
SCIENCE VOL 319 29 FEBRUARY 2008 [PDF]
Quantum Gases
Immanuel Bloch
SCIENCE VOL 319, P. 1202, 29 FEBRUARY 2008 [PDF]
Quantum all the way
Philip Ball
NATURE|Vol 453|1 May 2008, p. 22 [PDF]
[其他科學]
[近期有趣]
Pyridine-Ag20 Cluster: A Model System for Studying Surface-Enhanced Raman Scattering
Linlin Zhao, Lasse Jensen, and George C. Schatz
J. Am. Chem. Soc.; 2006; 128(9) pp 2911 - 2919 [PDF]