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Abstract

A proposal for extrapolation of correlated electronic structure calculations based on correlation-consistent polarized
double- and triple-zeta basis sets is evaluated. Optimum exponents are presented for separately extrapolating the Hartree—Fock
and correlation energies, and the method is shown to yield energies that are more accurate than those from straight
correMon-cons)sien: pohanzed sexmphe-2eia thoohaNons 2 dess Wam Y% of Ype cost. Yor ine 1es1 propiems. e rovi-mean-
s@uare devizhons Trom fpe comdieie 'pams hmi we Y328 ked ) mo) For dhe exirapthaied cdhevhahons and BOH-H.b
kcal /mol for the polarized sextuple-zeta calculations. © 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

There has been considerable recent interest in
methods that use electronic structure calculations to
predict quantitative bond energies and barrier heights
[1]. Methods that extrapolate to the limit of complete
configuration interaction ! [2—11] or to a complete
one-electrant basis set for a given level of electran
correlation [12—17] are particularly valuable since
the slow convergence of correlated calculations to
the [imit of a complete one-electron basis set is the
limiting feature in the accuracy of most electronic
structure calculations.

Martin [14,16] and Halkier et al. {17] have pre-
sented very useful studies of basis-set convergence
and practical suggestions for extrapolating to the
limit. The emphasis was on obtaining very accurate
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! Complete CI is complete with respect to both one-electron
basis and level of electron correlation; full CI is complete with
respect 1o the level of correlation for a given one-eloctron basis.
Basis-set convergence is concerned with the compieteness of the
©One-E1et1ron 'dasis SE1 G012 Fiven teve) Ui tietnvn tunreiiion.

results for small molecules by extrapolating from
very large basis sets. For example, Martin [16] ob-
tained an average accuracy of 0.2 kcal/mol in ex-
trapolating CCSD(T) ? calculations from aug'-cc-
pVTZ [19-21], aug’-cc-pVQZ and aug’-cc-pV5Z ba-
sis sets with separate exponents ° for the Hartree—
Fock (HF) and correlated parts of the energy. Simi-
larly, Halkier et al. [17)] obtained resuits within a few
tenths of a kcal/mol of the basis-set limit for
CCSO(T} calcularions by extrapolating from cc-
pCV3Z {ZZ] and cc-pCV6Z calcuiations. In particuiar
they noted that inclusion of cc-pVDZ or cc-pCVDZ
results in the extrapolations lowers the accuracy
consistently, and they recommended omitting these
calculations from the extrapolations. In the present
Letter, though, we return to this question. Our moti-

2 CCSD(T) denotes coupled clusters method with single and
double excitations and noniterative inclusion of connected triples
[18].

* I chis Leteer, ‘exponenis’ refers (o the power law used for
extrapofation, not (o exponental parameters of individual basis
Suntions.
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vation is economical. For many cases of interest,
even cc-pVTZ basis sets are very expensive, and
augmenting the basis with diffuse functions, correlat-
ing core orbitals, or going to polarized quadruple
zeta are all unaffordable. Thus, for potential applica-
tions to large molecules, extrapolation from cc-pVDZ
and cc-pVTZ calculations would be very useful, if it
improves the accuracy. The first objective of the
present Letter is to reconsider that accuracy.

Halkier et al. [17] made a significant observation
that I shall build on in this Letter. They recom-
mended that the extrapolation exponent be optimized
to minimize the mean unsigned error (MUE) of the
extrapolated result from the best estimate of the
basis-set limit rather than by fitting calculations with
three or more basis sets. I will use this idea with
their estimated basis-set limits for Ne, HF, and H,0
to optimize exponents for MP2 * CCSD, and
CCSD(T) calculations, except that we minimize the
root-mean-square {RMS) error rather than the MUE,
and we use the valence-only limits, not the core-cor-
related limits (for large molecules, changes in core
correlation energy upon bond formation are usually
small compared to other errors [24,25]). I combine
the optimization of the extrapolation exponent with
another idea [16], namely the use of separate expo-
nents for the Hartree—Fock and correlated parts of
the calculation. The second objective of the present
Letter is to present the optimized exponents for these
extrapolations.

2. Theory

The total energy is a sum of the HF and correla-
tion parts:
Etot — EHF + Ecor‘ (1)
The components of the energy are assumed to ap-
proach their basis-set limits by power laws:

EFf = EfF 4+ AFF X (2)
and
E}c{or — E;or +AcorX——ﬂ . (3)

Here X = 2 for the cc-pVDZ basis and X = 3 for the

* MP2 denotes second-order Mgller—Plesset perturbation theory
[23].

Table 1
RMS deviations (kcal /mol) from the complete basis limit for the
total energy

X MP2 CCSD CCSIXT)
2 102.6 95.6 99.9
3 375 324 338
5 7.6 53 5.5
6 44 3.0 31
2,3 1.3 19 24

cc-pVTZ basis. Then the basis-set limit for the total
energy is obtained by

E;Ot =E°I°-lF +E;or‘ (4)

Combining these equations yields

Eotcot= 3a—2aE;lF__ 3= _zaE;IF

38 28
or __
+55 555

E3. (5)

3. Results

Optimizing the exponents as discussed in Section
1 yields a=3.4, Byp, =2.2, and Becsp = Beesoem
=24

Table 1 gives RMS deviations from the
complete-basis limit [17] for Ne, HF, and H,O of
single-level calculations with cc-pVDZ, cc-pVTZ,
cc-pV5Z, and cc-pV6Z as well as by the dual-level
calculations based on Eq. (5).

4. Discussion

The method works remarkably well. The RMS
errors are smaller than those for unextrapolated re-
sults from cc-pV6Z calculations, and they are 2.3-5.8
times smaller than unextrapolated results from cc-
pV5Z calculations.

The number N of basis functions per atom in a
cc-pVXZ calculation scales as [17]

N=(X+1)(X+;)(X+2)/3. (6)

Furthermore the computer time for MP2, CCSD, and
CCSI(T) calculations scales as n°N* n®N*, and
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n'N*, respectively, where n is the number of atoms
[26]. Thus N* is the relevant scaling for all three
correlated methods when they are applied to a single
systern with a sequence of basis-set sizes. These
values are presented in Table 2, where the final row
corresponds to the sum for X =2 and X = 3. Table
2 shows that the extrapolated calculation is nomi-
nally only 5% more expensive than performing only
the cc-pVTZ calculation. Thus it would be a shame
not to extrapolate whenever cc-pVTZ is affordable.
Furthermore the single-level cc-pV6Z calculation is
nominally 453 times more expensive than the extrap-
olation based on X =2 and 3, which has a smaller
RMS error. Clearly the unextrapolated, ‘pure’
single-level approach cannot compete with even very
simple extrapolation schemes.

One could also apply this method to extrapolate
other methods of calculating correlation energy, e.g.,
density functional theory. However, the CCSD(T)
extrapolations are liable to be most useful because
CCSI(T) is often very close to full CI when a single
reference configuration is adequate. Notice that, un-
like some extrapolation schemes and some forms of
DFT that have parameters fit to experiment, the
present method is totally ab initio because the data
[17] used for parameterization is all ab initio data.

Eq. (5) demonstrates that the X = 2,3 result is a
linear combination of four components. Thus, if
analytic gradients are available for these four compo-
nents, as they often are, one can even optimize
geometries at the extrapolated level. Thus will be
especially useful for kinetics, where the saddle point
location is typically strongly correlated to the barrier
height (this correlation is a consequence of Ham-
mond’s postulate [27,28]). For example, in an
exothermic reaction the barrier is usually early, and
lowering the barrier (which is what will typically

Table 2

Computational effort according to scaling laws

X Nt Ratio®
2 3.8%10% 0.05
3 8.1x10° 1.00
5 9.2x10° 113
6 3.8x10% 4743
2,3 8.5%10° 1.05

“Ratio to effort for X = 3,

occur when one extrapolates) is expected to make
the barrier occur even earlier along the reaction path
[29]. Analytic gradients at the extrapolated level
could also be used for ab initio molecular dynamics
calculations [30-32).

The extrapolated Hessians are also linear combi-
nations of the Hessians of the four components.
Furthermore, because of the linearity of Eq. (5) one
may directly extrapolate relative energies as well as
absolute energies. In these respects the new approach
shares some of the advantages of the integrated
molecular orbital-molecular orbital (IMOMO) [33,6]
and SAC-type [2—8] methods, which are also linear
combinations of components.

There is another converged-basis correlation en-
ergy in the literature that can be used as a check,
namely the MP2 correlation energy of HF calculated
by Klopper [34]. Wilson and Dunning [35] found
errors of 7.4 and 3.0 kcal/mol for cc-pVDZ and
cc-pVTZ calculations, respectively. Eq. (5) yields an
error of only 0.04 kcal/mol, which is another re-
markable success and an order of magnitude smaller
error than is obtained [35] by using the cc-pV6Z
basis set without extrapolation.

Although we used the correlation-consistent basis
sets here, one could presumably attempt similar cor-
relations with other kinds of basis sets, but one
would expect such correlations to be less successful
because other basis-set sequences are less systematic.

One could imagine various improvements on the
scheme presented here. Foremost among these would
be parameterizing the method against a greater num-
ber of basis-set-limit data when such data become
available. Meanwhile the parameterization presented
here should be useful for a variety of applications.
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