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A qualitative examination of generalized valence bond pair correlation energies leads us to a quantitative
relationship (interference effect) between basis set truncation errors in MP2 energies and basis set truncation
errors in CCSD(T) energies. Thus, a knowledge of the MP2 complete basis set limit can be combined (for
example) with CCSD(T)/[5s4p3d2f/4s3p2d] calculations to estimate the CCSD(T) limit to within(0.46 kcal/
mol. Explicit MP2-R12 calculations are then compared to three extrapolation schemes employing cc-pVnZ
correlation consistent basis sets in an attempt to find an inexpensive route to the required MP2 limit. The first
employs theN-1 asymptotic convergence of pair natural orbital (PNO) expansions to extrapolate to the complete
basis set (CBS2) limit. The second employs (l + 1/2)-3 extrapolations of more than one MP2/cc-pVnZ calculation
to estimate this MP2 limit. The third method combines the PNO extrapolations with a linear and thus size-
consistent (l + 1/2)-3 extrapolation. This linear (l + 1/2)-3 extrapolation of first CBS2/cc-pVDZ and CBS2/
cc-pVTZ then CBS2/cc-pVDZ and CBS2/cc-pVQZ energies gives the absolute MP2-R12 limit to within
(0.86 and(0.49 kcal/mol respectively for a test set of 12 small closed shell molecules, which represents a
new level of accuracy for calculations fast enough to be routinely applied to molecules as large as naphthalene.
Combining these MP2 limits with the interference corrected CCSD(T)/cc-pVDZ and CCSD(T)/cc-pVTZ
energies respectively, gives the absolute CCSD(T) basis set limit to within(1.74 and(0.93 kcal/mol.

I. Introduction

The introduction of an innovative new conceptual framework
can have a broad influence in the development of a scientific
discipline. The generalized valence bond (GVB) theory1 of
Goddard is an example of such a conceptual framework. On a
qualitative level, GVB theory has formed the basis for the
interpretation of a wide range of chemistry.2 It is especially
useful for the description of diradicals generally and the
homolytic dissociation of chemical bonds in particular. Our own
interest was in the development of improved quantitative
methods for computational quantum chemistry. We therefore
turned our attention to the quantitative errors in the GVB energy,
that is, the GVB correlation energy.

II. Pair Correlation Energies

Since the self-consistent field (SCF) energy is correct to first
order,3 the correlation energy begins with the second-order
correction to the energy:4

This second-order Møller-Plesset (MP2) perturbation energy
can be partitioned into a sum of pair correlation energies,eij,
one for each pair of occupied orbitals,ij , providing an intuitively
appealing understanding of electron correlation in polyatiomic
molecules.5,6 These pair energies are often further partitioned
into intraorbital pair energies,Râeij, betweenR and â spin
electrons in the same restricted Hartree-Fock (RHF) spatial

orbital and interorbital pair energies,Râeij and RReij, between
electrons in different orbitals. The intraorbital pair energies are
usually larger than the interorbital pair energies.

III. GVB Pair Energies

Generalized valence bond theory relaxes the RHF constraint
of orbital double occupancy3

while a pure spin state is maintained1

thus reducing the RHF intraorbital pair correlation energy,
e11(RHF)≡ (Eexact- ERHF), to the GVB pair correlation energy,
eab(GVB) ≡ (Eexact - EGVB). The GVB pair energy is compa-
rable in magnitude to an interorbital pair energy, and thus, GVB
theory provides an immediate improvement in predicted energy
differences between open- and closed-shell states. To cite a
famous example, HF theory predicts that the CH2

1A1 state lies
25.0 kcal/mol above the3B1 ground state.7 The GVB energy
difference8 of 10.5 kcal/mol is in much better agreement with
the experimental value,9 9.0 (0.1 kcal/mol.

In our first paper on this subject, we presented a simple
interpretation for the magnitude of the GVB pair energies.10

The approximation that the HF doubly occupied orbital,φ1, is
the geometric mean of the two GVB orbitals,φa andφb, led us
to the overlap approximation for the relationship between RHF
and GVB pair correlation energies:10,11
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whereSab is the overlap integral between the two GVB orbitals,
Ecorr(GVB) is the difference between the full CI energy vs the
GVB energy, andEcorr(RHF) is the difference between the full
CI energy vs the RHF energy. This semiempirical approximation
for the variation of GVB pair correlation energies gives a simple
intuitive understanding of the decrease in the GVB energy error
as a covalent bond dissociates (Figure 1). The GVB pair energy
varies with the extent to which the two electrons overlap each
other.

IV. Generalization to GVBpp(1/N): Interference Effects

If we transform from the GVB orbital pair,φa andφb, to the
natural orbital representation,φ1 andφ2:12

then eq 4 transforms to13

If we takeC1 as positive, thenC2 is always negative. In H2
for example,C1 (i.e. C1σg2) decreases from 0.99 to 1/x2 and
C2 (i.e. C1σu2) changes from-0.11 to -1/x2 as the H2
molecule dissociates into two hydrogen atoms. This leads us to
an alternative interpretation for the magnitude of GVB pair
energies: the fact thatC1 andC2 differ in sign leads to a partial
cancellation orinterference effectin eq 6. We can get a better
appreciation of the origin of this interference if we consider
the GVB analogue of eq 1, in which the matrix elements
[〈11|r12

-1|ab〉] are replaced by [C1〈11|r12
-1|ab〉 + C2〈22|r12

-1|ab〉],
but with the term havinga ) b ) 2 omitted from the sum on
the right side. If we make the approximation that〈11|r12

-1|ab〉
≈ 〈22|r12

-1|ab〉, then eq 6 follows (this approximation is exact
in the limit as a and b approach infinity).13 If we generalize eq
5 to the N-configuration perfect pairing generalized valence
bond, or GVBpp(1/N), wave function

then this reasoning provides theN-configuration generalization
of eq 6

where ∆E(2)
corr(RHF)]∞N+1 is the residual part of the RHF

second-order correlation energy beyond the firstN natural
orbitals (i.e. omitting the contributions of NOs 2 throughN to
the second-order correlation energy). Substitution of eq 1 for
∆E(2)

corr(RHF) then gives

where theinterference factor, [∑Cµ]2, is just the square of the
trace of the density matrix.13,14The left-hand side of eq 9 is the
error,∆eii

(CI)(N), in anN natural orbital CI calculation, GVBpp-
(1/N), describing an electron pair,ii . The right-hand side of eq
9 is the interference factor times the error,∆eii

(2)(N), in an MP2
calculation, using the same basis set. Thus, the interference
factor provides the relationship between CI vs second-order MP2
basis set truncation error. Generalization to the interorbital pair
energies found in many-electron species follows the same
arguments, giving:13,14

where we have used the limit to indicate that eq 10 is
asymptotically correct for largeN.

Consideration of the qualitative nature of GVB pair correla-
tion energies ultimately led us to this quantitative connection
between MP2 basis set truncation errors and full CI basis set
truncation errors.13-15 In practice, we must know (or at least
have an estimate for) the second-order MP2 basis set truncation
error, ∆eij

(2)(N), to apply eq 10.

V. CCSD(T) Basis Set Truncation Errors

If we apply eq 10 to each of the electron pairs in a molecule,
we obtain an estimate of the ratio of the total FCI basis set
truncation error to the MP2 basis set truncation error:

Klopper et al. have recently pointed out that our interference
effect predicts the observed ratio of the coupled-cluster16 singles
and doubles with perturbative triples,17 CCSD(T), to MP2 basis
set errors to very high accuracy.18 A comparison of the observed
and predicted ratios for 12 small molecules and two atoms is
presented in Figure 2. These calculations employed fairly robust
quadruple-ú [5s4p3d2f,4s3p2d] basis sets, since eq 10 is exact
only in the limit of a complete basis set.

The results in Figure 2 suggest a method for improving the
accuracy of CCSD(T) energies by nearly 2 orders of magnitude.
If we know the MP2 CBS limit, then we can use eq 11 to estimate
the CCSD(T) CBS limit given a CCSD(T) calculation withonly
a [5s4p3d2f,4s3p2d] basis set. We present a test of this

Figure 1. The overlap approximation in eq 4 describes the qualitative
variation of the GVB correlation energy with the bond length for H2.
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hypothesis in Table 1. We have used the explicitrij results of
Klopper et al. for both the MP2 limit and the CCSD(T) limit.18

The column in Table 1 labeled EInt is given by:

These results in Table 1 demonstrate thatif we know the exact
MP2 limit, then modest CCSD(T) calculations are adequate to
estimate the CCSD(T) limit to within better than 1 mEh! The
very expensive CCSD(T)-R12 calculations can be avoided with
little penalty in absolute accuracy. We next consider the question
of how best to obtain the MP2 limit.

VI. The MP2 Limit

Several methods have been developed for establishing the
MP2 limit. For the present, we shall restrict ourselves to a
comparison of three of the most currently popular methods and
a novel combination of two of these methods that achieves a
new level of efficiency in obtaining chemically accurate absolute
MP2 energy limits.

Early work on atoms19,20employed increasing sets of s, p, d,
etc. basis functions, explicitly seeking convergence to the
complete basis set limit. The power of such methods was greatly
enhanced by the classic papers of Schwartz establishing the
asymptotic convergence of such angular momentum expan-
sions:21,22

where the exponents-3 and-5 apply to opposite spinRâ and
equal spinRR or ââ pairs, respectively. Extrapolations to the
complete basis set limit using the asymptotic formulas of
Schwartz were employed first by Bunge and later by Jankowski,
Malinowski, and Polasik to establish a database of CBS-MP2
limits for closed-shell atoms.23,24

A. Pair Natural Orbital Extrapolations. Twenty years ago
we extended this approach to polyatomic molecules by trans-
formation of the Schwartz formulas to a symmetry independent
form based on the total number,N, of pair natural orbitals
(PNOs):13

where the exponents-1 and-5/3 now apply to opposite spin
Râ and equal spinRR or ââ pairs, respectively. The exclusion
parameter,δij, can be determined as the solution of a quadratic
equation.25 The algorithm employed for these PNO extrapola-
tions selects the value ofN giving the largest (i.e. most negative)
value for the CBS pair energy, with the constraint thatN >
Nmin. Convergence to the exact CBS pair energy is ensured by
systematically increasingNmin as the basis set is expanded. For
example, we generally setNmin equal to 5 for spd basis sets
and equal to 10 for spdf basis sets. These nonlinear extrapola-
tions are size-consistent if the SCF orbitals are first localized
before extrapolation of each of the individual pair energies to
the CBS limit. We assume thatN is large enough for the
asymptotic form to be applicable and that the low-lying natural
orbitals are accurately described with the basis set employed.
These extrapolations served as polyatomic benchmarks for their
time,26 but improvements in both hardware and software now
make more demanding standards possible.

B. Explicit rij Calculations. An ingenious method for
explicitly including the interelectronic cusp:

TABLE 1: Interference Effect from Eq 11, Combined with a Knowledge of the MP2 Limit, Can Be Used To Estimate the
CCSD(T) Limit, EInt , using Eq 12a

CCSD(T)/QZ E2/QZ MP2-R12 〈Int Fact.〉 EInt CCSD(T)-R12

C2H2 -77.20339 -0.32233 -0.34650 0.58597 -77.21755 -77.21750
CH4 -40.44772 -0.20598 -0.21930 0.58751 -40.45554 -40.45520
CO -113.18016 -0.37292 -0.40530 0.65142 -113.20126 -113.20190
CO2 -188.37023 -0.63146 -0.68870 0.67092 -188.40863 -188.41010
H2 -1.17358 -0.03269 -0.03430 0.43535 -1.17428 -1.17420
H2O -76.35559 -0.27716 -0.30110 0.66501 -76.37150 -76.37180
HCN -93.29468 -0.36028 -0.38800 0.61304 -93.31167 -93.31200
HF -100.36730 -0.29052 -0.31970 0.71352 -100.38812 -100.38870
NH3 -56.48974 -0.24684 -0.26500 0.61989 -56.50100 -56.50090
N2 -109.39748 -0.39130 -0.42250 0.63051 -109.41715 -109.41810
H2CO -114.36069 -0.41448 -0.44950 0.64991 -114.38345 -114.38400
F2 -199.34698 -0.55618 -0.61360 0.72026 -199.38834 -199.38980

rms error 0.02285 0.03305 0.00074

a All energies are given in hartree atomic units.

Figure 2. The interference effect in eq 11 gives a quantitative
description of the relationship between the MP2 and CCSD(T) basis
set truncation errors. These calculations employed [5s4p3d2f,4s3p2d]
basis sets for the species: Be, H2, C2H2, CH4, HCN, NH3, N2, H2CO,
CO, H2O, CO2, HF, F2, and O+.6

EInt ) ECCSD(T)/QZ+ 〈Int Fact.〉 ×
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through the resolution of the identity has been developed by
Kutzelnigg and Klopper.27 The details are given in several recent
reviews28,29 and a recent comparison with one-electron basis
set methods puts these calculations in perspective.18 The
interelectronic cusp is explicitly built into these wave functions,
but large one-electron basis sets are still required both to
accurately describe the remainder of the wave function and to
converge the resolution of the identity. Thus, Klopper et al.
employ [13s8p6d5f/7s5p4d] one-electron basis sets to determine
both the MP2 limit and the CCSD(T) limit.18

These calculations are listed as MP2-R12 and CCSD(T)-
R12 in our tables. We have selected the version called MP2-
R12/A as a benchmark reference for our study of the conver-
gence to the MP2 limit. This is the version that Klopper et al.
found to agree best with our interference effect. The close
agreement with extrapolations of one-electron basis set expan-
sions justifies this choice.

C. Correlation Consistent Basis Sets.The third and most
recent addition to this arena is the Dunning sequences of
correlation consistent basis sets.30,31They provide a well-defined
sequence of convergent approximations through the systematic
construction of basis sets rather than the projection of pair-
natural orbitals after completion of the MP2 calculation. We
had previously shown that atomic pair natural orbitals (APNOs)
form shells, each member of which makes a similar contribution
to the correlation energy,13 and that linear combinations these
APNOs produced the corresponding molecular pair natural
orbitals,26 making the APNOs a sensible choice for calculations
of molecular correlation energies. Adding each new shell of
APNOs forms a new member of a consistent sequence of basis
sets for electron correlation. Thus, Dunning has provided a
systematic sequence of “correlation consistent” basis sets
ranging from the simple [3s2p1d,2s1p] cc-pVDZ valence
double-ú plus polarization basis sets to the very large
[7s6p5d4f3g2h1i,6s5p4d3f2g1h] cc-pV6Z basis sets.30,31 Each
successive member of the sequence is fully optimized for the
neutral atom and includes one more function of each angular
momentum type present in the previous member, plus one higher
angular momentum function. The systematic structure was
designed to allow for the possibility of using this well-defined
sequence of calculations to extrapolate to the CBS limit, in much
the same way that we had used pair natural orbital sequences.
We shall employ these basis sets as a vehicle to compare the
three approaches.

D. MP2 Results.The MP2 second-order energy components
obtained with the Dunning cc-pVnZ (n ) 2-6) basis sets for
our test set of 12 closed-shell molecules (at the molecular
geometries specified by Klopper et al.)18 are given in Table 2,
along with the root-mean-square (rms) deviations from the
MP2-R12 limit determined by Klopper et al. This rms error is

reduced by about a factor-of-two with each increment in the
size of the basis set, but even with the largest cc-pV6Z basis
sets the rms error is still an unacceptable 8.4 mEh. This nicely
demonstrates the slow convergence of the correlation energy
with the size of the one-electron basis set, but ignores the
reason Dunning developed these systematic sequences of basis
sets, which was to permit well-defined extrapolations to the
complete basis set limit.30

A variety of extrapolation algorithms have been applied to
the sequences generated by the correlation consistent basis
sets.30,32-36 Dunning and his colleagues had initially suggested
fitting their calculations to an exponentially decaying func-
tion:30,32,33

which consistently fits the cc-pVTZ through cc-pV6Z (i.e.n )
3, 4, 5, and 6) energies quite nicely, as illustrated by the neon
atom results in Figure 3. However, as definitive values for
E(2)(CBS) became available from the MP2-R12 calculations
of Klopper,38 it became clear that eq 16 seriously underestimates
the magnitude of the basis set truncation error (Figure 3).
Exponential extrapolation of then ) 3, 4, 5, and 6 second-
order energies in Table 2 merely reduces the rms error from
8.37 to 5.25 mEh. Wilson and Dunning therefore examined34 a
wide variety of extrapolations (24 variations) based on gener-
alizations of eq 13

where lmax ) n is the maximum angular momentum for each
cc-pVnZ basis set. They obtained rms deviations from Klopper’s
results of less than 1 mEh using several different combinations
of values fora and sets ofj values. The accuracy of these
extrapolations can be understood by recalling the shell structure
for APNOs noted above13 and assumed in the construction of
the cc-pVnZ basis sets.30 This hydrogenic shell structure implies
that eq 17 should describe the asymptotic contribution of all
APNOs with the principal quantum number,n, equal tolmax +
1. This is precisely the form of the increment between successive
members of the cc-pVnZ sequence of bass sets, and hence the
angular momentum extrapolations of Wilson and Dunning can
account for both radial and angular basis set truncation error.
We obtain comparable results with just one term fixinga ) 1/2
and j ) 3

as shown in Figure 3 and Table 3. Although our choice offers
no numerical accuracy advantage over those of Wilson and

TABLE 2: Convergence of the cc-pVnZ Basis Set MP2 Correlation Energy (in hartree atomic units) to the MP2-R12 Limit

E2(DZ) E2(TZ) E2(QZ) E2(5Z) E2(6Z) MP2-R12

C2H2 -0.25590 -0.31017 -0.32948 -0.33695 -0.34041 -0.3465
CH4 -0.16113 -0.19827 -0.21008 -0.21435 -0.21631 -0.2193
CO -0.28730 -0.35560 -0.38146 -0.39216 -0.39700 -0.4053
CO2 -0.48211 -0.60152 -0.64691 -0.66557 -0.67398 -0.6887
H2 -0.02639 -0.03168 -0.03312 -0.03366 -0.03390 -0.0343
H2O -0.20171 -0.26155 -0.28288 -0.29159 -0.29528 -0.3011
HCN -0.28489 -0.34582 -0.36806 -0.37697 -0.38103 -0.3880
HF -0.20159 -0.27173 -0.29748 -0.30826 -0.31294 -0.3197
NH3 -0.18639 -0.23519 -0.25162 -0.25802 -0. 26074 -0.2650
N2 -0.30708 -0.37439 -0.39944 -0.40980 -0.41450 -0.4225
H2CO -0.31664 -0.39557 -0.42411 -0.43563 -0.44082 -0.4495
F2 -0.39402 -0.52259 -0.56967 -0.58968 -0.59863 -0.6136

rms error 0.12519 0.05154 0.02449 0.01336 0.00837

E(2)(n) ) E(2)(n)∞) + A exp(-an) (16)

E(2)(lmax) ) E(2)(lmax)∞) + ∑jAj(lmax + a)-j (17)

E(2)(lmax) ) E(2)(lmax)∞) + A3(lmax + 1/2)
-3 (18)
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Dunning in the present context, we find it more satisfying to
achieve success with the simplest extrapolation based on eq 13.
We have used just two points,E(2)(lmax2) andE(2)(lmax1), so that
our single term extrapolation is linear

and thus is rigorously size-consistent.In addition, eq 19 proVides
a basis for easily obtaining analytical deriVatiVes of the
extrapolated MP2 basis set limit.37 A second term with a) 1/2

andj ) 5 is necessary to fit the cc-pVDZ energy (Figure 4 and
Table 3). However, this three parameter fit of three cc-pVnZ
energies (n ) 2, 3, and 4) is of no obvious value, since we
obtain equally good extrapolations if we simply start our two-
parameter fit with the cc-pVTZ basis set (i.e.n ) 3 and 4; see
Figure 4 and Table 3).

We note that even though there is virtually no difference in
the quality of the fit to the set of four cc-pVnZ energies (Figure
3), the extrapolation using eq 19 reduces the error by 1 order
of magnitude relative to eq 16, demonstrating the importance
of basing extrapolations on a fundamental mathematical analysis
of the form for the asymptotic convergence,21,22 rather than
simple empiricism.32 The extrapolated second-order MP energy
components in Table 3 provide a dramatic improvement over
the raw data in Table 2. The excellent agreement with both the

TABLE 3: Convergence of the (l + 1/2)-3 Extrapolated MP2/cc-pVnZ Correlation Consistent Basis Set MP2 Correlation Energy
(in hartree atomic units) to the MP2-R12 Limit (see eq 19)

E2(DZ,TZ) E2(DZ,TZ,QZ) E2(TZ,QZ) E2(TZ,5Z) E2(TZ,6Z) MP2-R12

C2H2 -0.34128 -0.34670 -0.34664 -0.34625 -0.34600 -0.3465
CH4 -0.21957 -0.22057 -0.22056 -0.21993 -0.21965 -0.2193
CO -0.39475 -0.40454 -0.40445 -0.40485 -0.40466 -0.4053
CO2 -0.66999 -0.68741 -0.68724 -0.68781 -0.68738 -0.6887
H2 -0.03472 -0.03439 -0.03439 -0.03434 -0.03431 -0.0343
H2O -0.29586 -0.30189 -0.30184 -0.30202 -0.30153 -0.3011
HCN -0.38076 -0.38789 -0.38782 -0.38778 -0.38754 -0.3880
HF -0.31195 -0.32043 -0.32035 -0.32095 -0.32056 -0.3197
NH3 -0.26316 -0.26626 -0.26623 -0.26594 -0.26547 -0.2650
N2 -0.41299 -0.42178 -0.42170 -0.42209 -0.42193 -0.4225
H2CO -0.44083 -0.44954 -0.44946 -0.44953 -0.44919 -0.4495
F2 -0.59631 -0.61165 -0.61150 -0.61297 -0.61269 -0.6136

rms error 0.00956 0.00096 0.00100 0.00067 0.00065

Figure 3. The MP2 correlation energy for the neon atom calculated
with the Dunning sequence of cc-pVnZ correlation consistent basis sets
(b) converges monotonically to the limit,E(2)(n)∞), which is the
intercept,E(2)(x)0), in this graph. The four calculations (n ) 3, 4, 5,
and 6) can be fit equally well with either an exponential function,
-0.3160+ A exp(-an), or with a function,-0.3204+ A3(lmax + 1/2)-3,
wherelmax ) n is the maximum angular momentum for each basis set.
However, only the extrapolation based on (lmax + 1/2)-3 gives a value
for the intercept,E(2)(lmax)∞) ) -0.3204, in agreement with both the
MP2-R12 value of Klopper,37 -0.3200, and the sequence of limit
E(2)(l e lmax ) 3, 4, 5, 6, and 9) calculations (1) from Jankowski and
Malinowski, converging toE(2)(lmax)∞) ) -0.3201.24

E(2)(lmax)∞) ) E(2)(lmax2) + {E(2)(lmax2) - E(2)(lmax1) ×
{(lmax2+ 1/2)

-3/[(lmax1+ 1/2)
-3 - (lmax2+ 1/2)

-3]} (19)

Figure 4. The MP2 correlation energy for acetylene calculated with
the Dunning cc-pVnZ basis sets (b) converges smoothly with (lmax +
1/2)-3, wherelmax is the maximum angular momentum for the basis set.
The function becomes linear forlmax g 3. The CBS PNO ex-
trapolated energies (1) show a linear convergence with (lmax + 1/2)-3,
beginning with lmax ) 2, and thus permit such extrapolations from
smaller basis sets. These sequences are both in good agreement with
the explicit interelectronic cusp MP2-R12 results of Klopper et al.18
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explicit r12 calculations of Klopper et al.18 and theE(2)(l e 9)
calculations of Jankowski and Malinowski,24 clearly demon-
strates the virtues of extrapolation based on eq 13.21,22

To compare extrapolation schemes, we have also employed
the Dunning correlation consistent basis sets for our pair natural
orbital CBS extrapolation algorithm (eq 14).13-15,25,26We have
considerable experience with spd basis sets for which we set
Nmin, the minimum number of PNOs, equal to 5, and with spdf
basis sets for which we setNmin equal to 10. After some
experimentation, we have selected theNmin values 5, 10, 21,
35, 57 for the cc-pVDZ through cc-pV6Z basis sets. These
values correspond to the sequence{1s2s2p,+3d, +3s3p4f,
+4d5g,+4s4p5f6h}. The results in Table 4 give a substantial
improvement over the raw second-order energies in Table 2
but are clearly inferior to the (lmax + 1/2)-3 extrapolations in
Table 3. Our CBS-4, CBS-Q, and CBS-APNO models25 employ
basis sets that are roughly comparable to the cc-pVDZ,
cc-pVTZ, and cc-pVQZ correlation consistent basis sets,
respectively, and thus give absolute accuracies before empirical
corrections that are also roughly comparable to the first three
columns of Table 4. Of course, much of this absolute error
cancels when we calculate chemical energy changes, and the
remainder is reduced with the small empirical corrections that
are included in the definitions of these models. Nevertheless,
the magnitude of the absolute errors in Table 4 is sobering and
obligates us to reconsider the design of these models.

E. If One Extrapolation Is Good ... The residual underes-
timate of the magnitude of the second-order energy component
after pair natural orbital extrapolations can have two possible
origins. Either the number of PNOs employed for the extrapola-
tion was too small for the asymptotic formula in eq 14 to be
applicable or the correlation consistent basis sets did not describe
these PNOs to sufficient accuracy. The former is less likely since

the relative performance of the PNO extrapolations does not
improve with increasinglmax. In either case, one might reason-
ably expect a correlation of this residual error with (lmax + 1/2)-3,
as indicated in Figure 4. If one extrapolation is good, perhaps
two could be better.

The results of this double extrapolation are presented in Table
5. The dramatic improvement overbothTables 3and4 is rather
remarkable for the (lmax + 1/2)-3 extrapolation of the cc-pVDZ
and cc-pVTZ PNO extrapolated results, which gives anabsolute
accuracy ofbetter than 1 kcal/molwith the largest calculation
using just a [4s3p2df/3s2pd] basis set. These calculations are
quite routine for molecules as large as naphthalene! Application
to several C20 species required 1-2 days each (depending on
the specific example) on an SGI Origin 2000 with eight 193
MHz R10000 processors running Gaussian 98.39

To preserve size consistency for the CBS PNO extrapolations,
we have restricted the (lmax + 1/2)-3 extrapolation to a linear
form (eq 19). The new double extrapolation that we propose
employs this linear extrapolation of pairs of CBS2/cc-pVnZ
calculations and thus is rigorously size-consistent. Note that
nonlinearN-parameter (lmax + a)-R extrapolations employing
least-squares fits to more thanN cc-pVnZ energies arenotsize-
consistent.34,35

F. Extrapolation of the Higher Order Contributions. The
higher order contributions to the correlation energy [i.e. CCSD-
(T)-MP2] are more than an order of magnitude smaller than
the second-order contributions. However, the basis set conver-
gence to the CCSD(T)-R12 limit (Table 6) does not follow
the simple linear behavior found for the second-order correlation
energy (Figure 5). This is a consequence of the interference
effect described above in eqs 10 and 11. Since the full CI or
CCSD(T) basis set truncation error is attenuated by the
interference factor:

TABLE 4: Convergence of the Pair Natural Orbital Extrapolated Complete Basis Set Second-Order, CBS2/cc-pVnZ,
Correlation Consistent Basis Set MP2 Correlation Energy (in hartree atomic units) to the MP2-R12 Limit

E2(DZ) E2(TZ) E2(QZ) E2(5Z) E2(6Z) MP2-R12

C2H2 -0.32147 -0.33801 -0.34239 -0.34415 -0.34466 -0.3465
CH4 -0.20536 -0.21451 -0.21731 -0.21839 -0.21862 -0.2193
CO -0.36565 -0.38988 -0.39754 -0.40132 -0.40257 -0.4053
CO2 -0.61816 -0.66127 -0.67496 -0.68139 -0.68355 -0.6887
H2 -0.03283 -0.03393 -0.03416 -0.03421 -0.03423 -0.0343
H2O -0.26293 -0.28767 -0.29483 -0.29815 -0.29926 -0.3011
HCN -0.35593 -0.37687 -0.38252 -0.38515 -0.38590 -0.3880
HF -0.27285 -0.30263 -0.31231 -0.31645 -0.31797 -0.3197
NH3 -0.23939 -0.25595 -0.26100 -0.26319 -0.26374 -0.2650
N2 -0.38353 -0.40846 -0.41524 -0.41879 -0.41995 -0.4225
H2CO -0.40538 -0.43325 -0.44156 -0.44534 -0.44668 -0.4495
F2 -0.52774 -0.58030 -0.59847 -0.60561 -0.60850 -0.6136

rms error 0.04429 0.01667 0.00793 0.00409 0.00237

TABLE 5: Convergence of the (l + 1/2)-3 Extrapolated Complete Basis Set Second-Order CBS2/cc-pVnZ Correlation Consistent
Basis Set MP2 Correlation Energy (in hartree atomic units) to the MP2-R12 Limit

E2(DZ,TZ) E2(DZ,QZ) E2(DZ,5Z) E2(DZ,6Z) MP2-R12

C2H2 -0.34749 -0.34673 -0.34650 -0.34606 -0.3465
CH4 -0.21976 -0.21978 -0.21974 -0.21942 -0.2193
CO -0.40377 -0.40414 -0.40502 -0.40480 -0.4053
CO2 -0.68599 -0.68671 -0.68794 -0.68750 -0.6887
H2 -0.03457 -0.03443 -0.03435 -0.03431 -0.0343
H2O -0.30185 -0.30144 -0.30180 -0.30145 -0.3011
HCN -0.38888 -0.38803 -0.38818 -0.38771 -0.3880
HF -0.31970 -0.32047 -0.32097 -0.32070 -0.3197
NH3 -0.26544 -0.26547 -0.26566 -0.26521 -0.2650
N2 -0.42275 -0.42180 -0.42245 -0.42215 -0.4225
H2CO -0.44923 -0.44905 -0.44949 -0.44917 -0.4495
F2 -0.61043 -0.61310 -0.61368 -0.61337 -0.6136

rms error 0.00137 0.00079 0.00053 0.00053
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it follows by simply subtracting{MP2/CBS- MP2/cc-pVnZ}
from both sides that the CBS limit for the higher order
correlation energy is

where∆ECCSD(T)t CCSD(T)- MP2. This CBS extrapola-
tion reduces the errors in the cc-pVQZ and cc-pV5Z higher order
correlation energy by 1 order of magnitude (Table 7) but
seriously overcorrects the cc-pVDZ and cc-pVTZ higher order

energies (Figure 5). A simple scaling to reduce the CBS
correction to the cc-pVDZ and cc-pVTZ energies

reduces the rms errors below 1 kcal/mol for both (Table 7).
We can now combine the extrapolated second-order correla-

tion energies from Table 5 with the extrapolated higher order
contributions from Table 7. Keeping in mind the higher cost of
the CCSD(T) calculations, we combine E2(DZ,TZ) from Table
5 with the scaled CCSD(T)/DZ from Table 7, E2(DZ,QZ) from
Table 5 with the scaled CCSD(T)/TZ from Table 7, E2(DZ,5Z)
from Table 5 with the unscaled CCSD(T)/QZ from Table 7,
and E2(DZ,6Z) from Table 5 with the CCSD(T)/5Z from Table
7. The rms deviations from the CCSD(T)-R12 correlation
energies18 are 1.74, 0.93, 0.54, and 0.41 kcal/mol, respectively.
The agreement between these basis set extrapolations and the
explicit r12 results is certainly encouraging.

G. Invariance. The PNO extrapolations in Tables 4 and 5
require localization of the occupied SCF orbitals to ensure size
consistency. The (lmax + 1/2)-3 extrapolations in Table 3 are
rigorously invariant to unitary transformations of the occupied
SCF orbitals. The lack of such invariance has been a weakness
of the PNO extrapolations. For example, PNO extrapolation with
the cc-pVTZ basis set for SO2 gives -729.71 mEh for the
estimated valence shell MP2 limit if we use the population
localized40 occupied SCF orbitals, but-726.71 mEh if we use
the Boys localized41 SCF orbitals. Further extrapolation using
eq 19 increases the value to-757.87 mEh for the population
localized MP2 limit, which is in somewhat better agreement
with the new value obtained with Boys localization,-756.88
mEh. Localization is still required for rigorous size consistency,
but the results are now less sensitive to the choice of localization
scheme. The residual lack of MP2 invariance will be reduced
further by the interference factor applied to the CCSD(T) limit.

The approach to invariance seems to be a natural consequence
of the increased accuracy with the double extrapolation. We
also note a significant reduction in the importance of diffuse
basis functions. The population localized CBS2/aug-cc-pVTZ
correlation energy for SO2 is -738.05 mEh, or 8.34 mEh below
the value without diffuse functions. The new double extrapola-
tion converts this to-758.47, only 0.6 mEh below the value
without diffuse functions.

VII. Conclusions

The qualitative behavior of GVB pair energies leads us down
a road to a better understanding of basis set truncation errors at
both the MP2 level and at the CCSD(T) level. The shell structure

TABLE 6: Convergence of the cc-pVnZ Basis Set Higher Order [i.e. CCSD(T)- MP2] Correlation Energy (in hartree atomic
units) to the CCSD(T)-R12 Limit

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z CCSD(T)-R12

C2H2 -0.0277 -0.0285 -0.0258 -0.0238 -0.0225 -0.0201
CH4 -0.0270 -0.0265 -0.0246 -0.0232 -0.0225 -0.0213
CO -0.0181 -0.0200 -0.0180 -0.0158 -0.0144 -0.0120
CO2 -0.0148 -0.0189 -0.0165 -0.0132 -0.0109 -0.0069
H2 -0.0083 -0.0077 -0.0072 -0.0069 -0.0068 -0.0068
H2O -0.0125 -0.0136 -0.0122 -0.0104 -0.0094 -0.0074
HCN -0.0206 -0.0217 -0.0194 -0.0172 -0.0159 -0.0133
HF -0.0065 -0.0081 -0.0075 -0.0060 -0.0049 -0.0034
NH3 -0.0199 -0.0202 -0.0184 -0.0168 -0.0159 -0.0140
N2 -0.0145 -0.0166 -0.0144 -0.0122 -0.0108 -0.0087
H2CO -0.0255 -0.0266 -0.0243 -0.0219 -0.0203 -0.0178
F2 -0.0179 -0.0216 -0.0211 -0.0187 -0.0168 -0.0146

rms error 0.0059 0.0074 0.0057 0.0036 0.0022

Figure 5. The higher order correlation energy for acetylene, CCSD-
(T) - MP2 (b), converges slowly and nonlinearly with the size (i.e.
n ) lmax) of the cc-pVnZ basis set. For basis sets larger than triple-ú
plus polarization (i.e.lmax ) 3), the CBS interference correction (eq
20) (1) dramatically accelerates convergence to the CCSD(T)-R12
limit determined by Klopper et al.18 An empirical scale factor (eq 21)
can extend the utility of this interference correction to the cc-pVTZ
and cc-pVDZ basis sets (9).

CCSD(T)/CBS ) CCSD(T)/cc-pVnZ+

〈Int Fact.〉{E(2)/CBS - E(2)/cc-pVnZ} (20)

∆ECCSD(T)/CBS ) ∆ECCSD(T)/cc-pVnZ+

{〈Int Fact.〉 - 1}{E(2)/CBS - E(2)/cc-pVnZ} (21)

∆ECCSD(T)/CBS ) ∆ECCSD(T)/cc-pVnZ+

{Scale}{〈Int Fact.〉 - 1}{E(2)/CBS - E(2)/cc-pVnZ} (22)

Full CI Complete Basis Set Limit J. Phys. Chem. A, Vol. 104, No. 11, 20002189



of atomic pair natural orbitals implies a linear (n + 1/2)-3

asymptotic convergence of the second-order cc-pVnZ correlation
energies, which in turn offers the possibility of analytical
derivatives for the MP2 basis set limit. A more immediate if
less ambitious result focuses on the single point MP2 limit.
Without any extrapolation, the very large [7s6p5d4f3g2h1i,-
6s5p4d3f2g1h] cc-pV6Z basis sets are still 5.3 kcal/mol from
the MP2-R12 limit for a test set of 12 small molecules. In
contrast, a linear size-consistent (l + 1/2)-3 extrapolation of
just the MP2/cc-pVTZ and MP2/cc-pVQZ energies is accurate
to (0.60 kcal/mol. If we try to further reduce the basis sets to
cc-pVDZ and cc-pVTZ, the error in the extrapolation increases
to (6.0 kcal/mol. However, a new double extrapolation provides
the complete basis set MP2 limit with an absolute accuracy of
(0.86 kcal/mol without recourse to basis sets larger than cc-
pVTZ [4s3p2d1f,3s2p1d]. The interference effect can then
provide an equally accurate ((0.93 kcal/mol) complete basis
set CCSD(T) limit. Although we still are a long way from a
complete new “model chemistry”,42 the absolute accuracy that
we have now achieved makes it clear that a new generation of
model chemistry methods will no longer require significant error
cancellation and probably can dispense with “number of electron
pairs” type empirical corrections.25,43
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TABLE 7: Convergence of the PNO CBS Extrapolated (eq 21) cc-pVnZ Higher Order [i.e. CCSD(T)- MP2] Correlation
Energy (in hartree atomic units) to the CCSD(T)-R12 Limit

cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z cc-pV6Z CCSD(T)-R12

C2H2 -0.0084 -0.0178 -0.0202 -0.0204 -0.0203 -0.0201
CH4 -0.0136 -0.0202 -0.0214 -0.0213 -0.0213 -0.0213
CO 0.0013 -0.0089 -0.0121 -0.0121 -0.0120 -0.0120
CO2 0.0164 -0.0007 -0.0066 -0.0071 -0.0070 -0.0069
H2 -0.0057 -0.0065 -0.0066 -0.0066 -0.0066 -0.0068
H2O 0.0009 -0.0056 -0.0079 -0.0078 -0.0077 -0.0074
HCN -0.0008 -0.0106 -0.0135 -0.0135 -0.0136 -0.0133
HF 0.0059 -0.0002 -0.0030 -0.0032 -0.0031 -0.0034
NH3 -0.0060 -0.0130 -0.0145 -0.0145 -0.0145 -0.0140
N2 0.0049 -0.0052 -0.0083 -0.0084 -0.0084 -0.0087
H2CO -0.0038 -0.0144 -0.0178 -0.0179 -0.0178 -0.0178
F2 0.0047 -0.0073 -0.0126 -0.0135 -0.0133 -0.0146

rms error 0.0085 0.0036 0.0006 0.0004 0.0004
scalea 0.31 0.68 0.96 0.99 0.95
scale rmsa 0.0015 0.0011 0.0006 0.0004 0.0004

a Equation 22.
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