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A qualitative examination of generalized valence bond pair correlation energies leads us to a quantitative
relationship (interference effect) between basis set truncation errors in MP2 energies and basis set truncation
errors in CCSD(T) energies. Thus, a knowledge of the MP2 complete basis set limit can be combined (for
example) with CCSD(T)/[5s4p3d2f/4s3p2d] calculations to estimate the CCSD(T) limit to withi6 kcal/

mol. Explicit MP2—R12 calculations are then compared to three extrapolation schemes employing cc-pVnZ
correlation consistent basis sets in an attempt to find an inexpensive route to the required MP2 limit. The first
employs theN~ asymptotic convergence of pair natural orbital (PNO) expansions to extrapolate to the complete
basis set (CBS2) limit. The second emplolys (/,) 3 extrapolations of more than one MP2/cc-pVnZ calculation

to estimate this MP2 limit. The third method combines the PNO extrapolations with a linear and thus size-
consistent l(+ %,)~2 extrapolation. This lineard & %/,)~2 extrapolation of first CBS2/cc-pVDZ and CBS2/
cc-pVTZ then CBS2/cc-pVDZ and CBS2/cc-pVQZ energies gives the absolute-KP2 limit to within

+0.86 and+0.49 kcal/mol respectively for a test set of 12 small closed shell molecules, which represents a
new level of accuracy for calculations fast enough to be routinely applied to molecules as large as naphthalene.
Combining these MP2 limits with the interference corrected CCSD(T)/cc-pVDZ and CCSD(T)/cc-pVTZ
energies respectively, gives the absolute CCSD(T) basis set limit to withiri4 and+0.93 kcal/mol.

I. Introduction orbital and interorbital pair energieg/fe.j and “%g;, between
electrons in different orbitals. The intraorbital pair energies are

The introduction of an innovative new conceptual framework X . - :
usually larger than the interorbital pair energies.

can have a broad influence in the development of a scientific
discipline. The generalized valence bond (GVB) théoo§ . .
Goddard is an example of such a conceptual framework. On a”l' GVB Pair Energies

qualitative level, GVB theory has formed the basis for the  Generalized valence bond theory relaxes the RHF constraint
interpretation of a wide range of chemistyt is especially of orbital double occupanéy

useful for the description of diradicals generally and the

homolytic dissociation of chemical bonds in particular. Our own Yrue(1,:2)= ¢1(D)ga(2) )
interest was in the development of improved quantitative
methods for computational quantum chemistry. We therefore

turned our attention to the quantitative errors in the GVB energy, v 2A—1/2,

®3)

thus reducing the RHF intraorbital pair correlation energy,
Since the self-consistent field (SCF) energy is correct to first e;3(RHF) = (Eexact— Ernr), to the GVB pair correlation energy,
order? the correlation energy begins with the second-order e;(GVB) = (Eexact— Ecve). The GVB pair energy is compa-

while a pure spin state is maintairied

II. Pair Correlation Energies

correction to the energy: rable in magnitude to an interorbital pair energy, and thus, GVB
theory provides an immediate improvement in predicted energy
occ oce| wirt [ |r,, *|ablAb|r,, |ij differences between open- and closed-shell states. To cite a
E@ = zelj(z) = Z (1) famous example, HF theory predicts that the,CH; state lies
] T\ €+ € T € € 25.0 kcal/mol above théB; ground staté. The GVB energy

differencé of 10.5 kcal/mol is in much better agreement with
This second-order MgllerPlesset (MP2) perturbation energy the experimental valu&9.0 0.1 kcal/mol.

can be partitioned into a sum of pair correlation energigs, In our first paper on this subject, we presented a simple
one for each pair of occupied orbitails,providing an intuitively interpretation for the magnitude of the GVB pair energfes.
appealing understanding of electron correlation in polyatiomic The approximation that the HF doubly occupied orbital, is
molecule® These pair energies are often further partitioned the geometric mean of the two GVB orbitals, and¢y, led us
into intraorbital pair energies?’ej, betweena and 8 spin to the overlap approximation for the relationship between RHF
electrons in the same restricted Hartré®ck (RHF) spatial and GVB pair correlation energié$!

10.1021/jp991947u CCC: $19.00 © 2000 American Chemical Society
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Figure 1. The overlap approximation in eq 4 describes the qualitative
variation of the GVB correlation energy with the bond length for H

E..,{(GVB) = €,(GVB) ~
28y

s,,(RHF) =
b

2S,°
—”DZECOARHF) @)

whereSy, is the overlap integral between the two GVB orbitals,
E.or{(GVB) is the difference between the full Cl energy vs the
GVB energy, andE..(RHF) is the difference between the full
Cl energy vs the RHF energy. This semiempirical approximation
for the variation of GVB pair correlation energies gives a simple

intuitive understanding of the decrease in the GVB energy error

Petersson and Frisch
then this reasoning provides theconfiguration generalization
of eq 6

N
EeorlGVB(IN)] ~ [} CIPAE., A(RHF)R.,

“=

(8)

where AE@ o (RHF)]*n+1 is the residual part of the RHF
second-order correlation energy beyond the fixsthatural
orbitals (i.e. omitting the contributions of NOs 2 throuiyho

the second-order correlation energy). Substitution of eq 1 for
AE@(RHF) then gives

Ecorr[GVBpp(llN)] ~
vit (i |r,, *|abI&blr,, i

[ZC] ab2+1 €+ —

where theinterference factar[yC,]?, is just the square of the
trace of the density matri}¢14The left-hand side of eq 9 is the
error,Ag;(®)(N), in anN natural orbital CI calculation, GVBpp-
(1/N), describing an electron pair, The right-hand side of eq

9 is the interference factor times the errag;d(N), in an MP2
calculation, using the same basis set. Thus, the interference
factor provides the relationship between Cl vs second-order MP2
basis set truncation error. Generalization to the interorbital pair
energies found in manyelectron species follows the same
arguments, giving®14

9)

€p

N
lim Ae, V(N = [Z CJ%AgP(N) (10)

as a covalent bond dissociates (Figure 1). The GVB pair energy

varies with the extent to which the two electrons overlap each
other.
IV. Generalization to GVBpp(1/N):

If we transform from the GVB orbital paigh, and¢y, to the
natural orbital representatiog; and ¢,:12

Interference Effects

Yove(1,2) = Ci91(1)p4(2) + Crp,(L)@,(2) (5)
then eq 4 transforms &
Ecor{GVB) % [C; + C)*Eo(RF) 6)

If we take C; as positive, therC; is always negative. In H
for example,C; (i.e. Cy,g?) decreases from 0.99 toI2 and
C, (i.e. Cin?) changes from—0.11 to —-1//2 as the H

molecule dissociates into two hydrogen atoms. This leads us to

an alternative interpretation for the magnitude of GVB pair
energies: the fact th&; andC; differ in sign leads to a partial
cancellation oiinterference effedn eq 6. We can get a better
appreciation of the origin of this interference if we consider
the GVB analogue of eq 1, in which the matrix elements
[11r; Yab]are replaced byQ:[11]r1;abTH Co22r1, Y ak]]

but with the term having@ = b = 2 omitted from the sum on
the right side. If we make the approximation tfiat|r;,~t|abl

~ [22|r1,~1|ablJ then eq 6 follows (this approximation is exact
in the limit as a and b approach infinit}j.If we generalize eq

5 to the N-configuration perfect pairing generalized valence
bond, or GVBpp(1N), wave function

N

Yeveppany(1:2) = Z C.o.(D)e,(2) (7)
F=

where we have used the limit to indicate that eq 10 is
asymptotically correct for larghl.

Consideration of the qualitative nature of GVB pair correla-
tion energies ultimately led us to this quantitative connection
between MP2 basis set truncation errors and full Cl basis set
truncation error33-15 In practice, we must know (or at least
have an estimate for) the second-order MP2 basis set truncation
error, Agj®(N), to apply eq 10.

V. CCSD(T) Basis Set Truncation Errors

If we apply eq 10 to each of the electron pairs in a molecule,
we obtain an estimate of the ratio of the total FCI basis set
truncation error to the MP2 basis set truncation error:

Z [ Z /‘u] ZAQJ @

(nterference Factak=
z Ag )
]

Klopper et al. have recently pointed out that our interference
effect predicts the observed ratio of the coupled-cld%singles
and doubles with perturbative triplésCCSD(T), to MP2 basis
set errors to very high accuraty/A comparison of the observed
and predicted ratios for 12 small molecules and two atoms is
presented in Figure 2. These calculations employed fairly robust
quadrupleg [5s4p3d2f,4s3p2d] basis sets, since eq 10 is exact
only in the limit of a complete basis set.

The results in Figure 2 suggest a method for improving the
accuracy of CCSD(T) energies by nearly 2 orders of magnitude.
If we know the MP2 CBS limithen we can use eq 11 to estimate
the CCSD(T) CBS limit given a CCSD(T) calculation withly
a [bs4p3d2f,4s3p2d] basis set. We present a test of this

(11)
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TABLE 1: Interference Effect from Eq 11, Combined with a Knowledge of the MP2 Limit, Can Be Used To Estimate the
CCSD(T) Limit, En, using Eq 12

CCSD(T)/QZ E2/QZ MP2-R12 nt FactO Eint CCSD(T)-R12
CoHz —77.20339 —0.32233 —0.34650 0.58597 —77.21755 —77.21750
CH; —40.44772 —0.20598 —0.21930 0.58751 —40.45554 —40.45520
co —113.18016 —0.37292 —0.40530 0.65142 —113.20126 —113.20190
CO, —188.37023 —0.63146 —0.68870 0.67092 —188.40863 —188.41010
H, ~1.17358 —0.03269 —0.03430 0.43535 ~1.17428 —1.17420
H,0 —76.35559 —0.27716 —0.30110 0.66501 —76.37150 —76.37180
HCN —93.29468 —0.36028 —0.38800 0.61304 —93.31167 —93.31200
HF —100.36730 —0.29052 —0.31970 0.71352 —100.38812 —100.38870
NH, —56.48974 —0.24684 —0.26500 0.61989 ~56.50100 ~56.50090
N, —109.39748 —0.39130 —0.42250 0.63051 —109.41715 —109.41810
H,CO —114.36069 —0.41448 —0.44950 0.64991 —114.38345 —114.38400
Fz —199.34698 —0.55618 —0.61360 0.72026 —199.38834 —199.38980
rms error 0.02285 0.03305 0.00074

a All energies are given in hartree atomic units.

1.0 ) o _
) Jim e P(1=1,) = e ACBSY 3] Tyt )
l'<11"§ > 7 ; @ @ 15\« 1 \-5
% im 6, @(1=1) = 6 (CBS) o) “filnac + 1)
?} 0.6 (13)
3
Y 04 . r where the exponents3 and—5 apply to opposite spias and
. equal spinao or B pairs, respectively. Extrapolations to the
'% 0.2| [ complete basis set limit using the asymptotic formulas of
o Schwartz were employed first by Bunge and later by Jankowski,
0.0 ‘ ‘ i Malinowski, and Polasik to establish a database of EBIB2
0o 02 04 06 08 10 limits for closed-shell atom&24
A. Pair Natural Orbital Extrapolations. Twenty years ago
Z Ae".(z)(Z Cu)z} / Zij{Aeii(z) ! we extended this approach to polyatomic molecules by trans-

Figure 2. The interference effect in eq 11 gives a quantitative formation of the Schwartz formulas to a symmetry independent

description of the relationship between the MP2 and CCSD(T) basis 10" balged on the total numbeN, of pair natural orbitals

set truncation errors. These calculations employed [554p3d2f,453p2d](PN05)-

basis sets for the species: Be, I€:H,, CHs, HCN, NH;, Np, H.CO,
6 . o _

€O, O, €O, HF, £, and O lim e, O(N) = “e, A(CBSYHZ2) V(N + 0,)

o - N—oo U | 51 I L

hypothesis in Table 1. We have used the expligitesults of

Klopper et al. for both the MP2 limit and the CCSD(T) lirfft. o @ — af (2) 250 573

The column in Table 1 labeled,Eis given by: lim e (N) =g (CBS)"'(K fy(N+0y) ™~ (14)

Eint = Eccspmyoz T Hnt Factlx where the exponents1 and—53 now apply to opposite spin

[E?@(MP2—-R12)— E?/QZ] (12) o and equal spimwa. or 53 pairs, respectively. The exclusion
parameterg;, can be determined as the solution of a quadratic
These results in Table 1 demonstrate thate know the exact  equatior?® The algorithm employed for these PNO extrapola-
MP2 limit, then modest CCSD(T) calculations are adequate to tions selects the value df giving the largest (i.e. most negative)
estimate the CCSD(T) limit to within better than 1 ghiEhe value for the CBS pair energy, with the constraint that-
very expensive CCSD(F)R12 calculations can be avoided with  Nn,in. Convergence to the exact CBS pair energy is ensured by
little penalty in absolute accuracy. We next consider the question systematically increasinymin as the basis set is expanded. For

of how best to obtain the MP2 limit. example, we generally sé&tyn equal to 5 for spd basis sets
o and equal to 10 for spdf basis sets. These nonlinear extrapola-
VI. The MP2 Limit tions are size-consistent if the SCF orbitals are first localized

Several methods have been developed for establishing thebefore extrapolation of each of the individual pair energies to
MP2 limit. For the present, we shall restrict ourselves to a the CBS limit. We assume that is large enough for the
comparison of three of the most currently popular methods and asymptotic form to be applicable and that the telying natural
a novel combination of two of these methods that achieves a orbitals are accurately described with the basis set employed.
new level of efficiency in obtaining chemically accurate absolute These extrapolations served as polyatomic benchmarks for their
MP2 energy limits. time 26 but improvements in both hardware and software now

Early work on atom¥-2°employed increasing sets of s, p, d, make more demanding standards possible.
etc. basis functions, explicitly seeking convergence to the B. Explicit rj Calculations. An ingenious method for
complete basis set limit. The power of such methods was greatlyexplicitly including the interelectronic cusp:
enhanced by the classic papers of Schwartz establishing the 1
2%;?;?:236 convergence of such angular momentum expan rli:Tow(r‘i) — w(rijzo)[1+§rij + ] (15)
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TABLE 2: Convergence of the cc-pVnZ Basis Set MP2 Correlation Energy (in hartree atomic units) to the MP2R12 Limit

E2(DZ) E2(TZ) E2(QZ2) E2(52) E2(62) MP2R12
CoH> —0.25590 —0.31017 —0.32948 —0.33695 —0.34041 —0.3465
CH, —0.16113 —0.19827 —0.21008 —0.21435 —0.21631 —0.2193
(e{0] —0.28730 —0.35560 —0.38146 —0.39216 —0.39700 —0.4053
CO, —0.48211 —0.60152 —0.64691 —0.66557 —0.67398 —0.6887
H, —0.02639 —0.03168 —0.03312 —0.03366 —0.03390 —0.0343
H,O —0.20171 —0.26155 —0.28288 —0.29159 —0.29528 —0.3011
HCN —0.28489 —0.34582 —0.36806 —0.37697 —0.38103 —0.3880
HF —0.20159 —0.27173 —0.29748 —0.30826 —0.31294 —0.3197
NH3 —0.18639 —0.23519 —0.25162 —0.25802 —0.26074 —0.2650
N2 —0.30708 —0.37439 —0.39944 —0.40980 —0.41450 —0.4225
H,CO —0.31664 —0.39557 —0.42411 —0.43563 —0.44082 —0.4495
F —0.39402 —0.52259 —0.56967 —0.58968 —0.59863 —0.6136
rms error 0.12519 0.05154 0.02449 0.01336 0.00837

through the resolution of the identity has been developed by reduced by about a factor-of-two with each increment in the
Kutzelnigg and Kloppet’ The details are given in several recent  size of the basis set, but even with the largest cc-pV6Z basis
reviewg®2% and a recent comparison with one-electron basis sets the rms error is still an unacceptable 8.4,nHis nicely
set methods puts these calculations in perspettivEhe demonstrates the slow convergence of the correlation energy
interelectronic cusp is explicitly built into these wave functions, with the size of the oneelectron basis set, but ignores the
but large one-electron basis sets are still required both to reason Dunning developed these systematic sequences of basis
accurately describe the remainder of the wave function and to sets, which was to permit well-defined extrapolations to the
converge the resolution of the identity. Thus, Klopper et al. complete basis set limff
employ [13s8p6d5f/7s5p4d] one-electron basis sets to determine A variety of extrapolation algorithms have been applied to
both the MP2 limit and the CCSD(T) limi the sequences generated by the correlation consistent basis
These calculations are listed as MPR12 and CCSD(Ty sets30:32-36 Dunning and his colleagues had initially suggested
R12 in our tables. We have selected the version called-MP2 fitting their calculations to an exponentially decaying func-
R12/A as a benchmark reference for our study of the conver- tion:30.32.33
gence to the MP2 limit. This is the version that Klopper et al.

found to agree best with our interference effect. The close E®(n) = E®(n=c) + A exp(~an) (16)
agreement with extrapolations of one-electron basis set expan-
sions justifies this choice. which consistently fits the cc-pVTZ through cc-pV6Z (ire=

C. Correlation Consistent Basis SetsThe third and most 3, 4, 5, and 6) energies quite nicely, as illustrated by the neon
recent addition to this arena is the Dunning sequences ofatom results in Figure 3. However, as definitive values for
correlation consistent basis sét8. They provide a well-defined ~ E®?(CBS) became available from the MPR12 calculations
sequence of convergent approximations through the systematicof Klopper3® it became clear that eq 16 seriously underestimates
construction of basis sets rather than the projection of-pair the magnitude of the basis set truncation error (Figure 3).
natural orbitals after completion of the MP2 calculation. We EXxponential extrapolation of the = 3, 4, 5, and 6 second-
had previously shown that atomic pair natural orbitals (APNOs) order energies in Table 2 merely reduces the rms error from
form shells, each member of which makes a similar contribution 8.37 to 5.25 mk Wilson and Dunning therefore examirféa
to the correlation energl?, and that linear combinations these Wide variety of extrapolations (24 variations) based on gener-
APNOs produced the corresponding molecular pair natural alizations of eq 13
orbitals2® making the APNOs a sensible choice for calculations i
of molecular correlation energies. Adding each new shell of EDa) = EP(pa=00) + szj(lmax+ a’ (17)
APNOs forms a new member of a consistent sequence of basis
sets for electron correlation. Thus, Dunning has provided a Wherelmax = n is the maximum angular momentum for each
systematic sequence of “correlation consistent” basis setscc-pVnZ basis set. They obtained rms deviations from Klopper's
ranging from the simple [3s2pld,2slp] cc-pVDZ valence results of less than 1 mEising several different combinations
double¢ plus polarization basis sets to the very large of values fora and sets of values. The accuracy of these
[7s6p5d4f3g2hli,6s5p4d3f2g1h] cc-pV6Z basis et Each extrapolations can be understood by recalling the shell structure
successive member of the sequence is fully optimized for the for APNOs noted abové and assumed in the construction of
neutral atom and includes one more function of each angularthe cc-pVnZ basis se#8.This hydrogenic shell structure implies
momentum type present in the previous member, plus one higherthat eq 17 should describe the asymptotic contribution of all
angular momentum function. The systematic structure was APNOs with the principal quantum numbex,equal tolyax +
designed to allow for the possibility of using this well-defined 1. This is precisely the form of the increment between successive
sequence of calculations to extrapolate to the CBS limit, in much members of the cc-pVnZ sequence of bass sets, and hence the
the same way that we had used pair natural orbital sequencesangular momentum extrapolations of Wilson and Dunning can
We shall employ these basis sets as a vehicle to compare thexccount for both radial and angular basis set truncation error.
three approaches. We obtain comparable results with just one term fixing Y/,

D. MP2 Results.The MP2 second-order energy components andj = 3
obtained with the Dunning cc-pVnz (= 2—6) basis sets for
our test set of 12 closed-shell molecules (at the molecular ED a0 = E2ma=) + Agllnax+ 7)° (18)
geometries specified by Klopper et &.are given in Table 2,
along with the root-mean-square (rms) deviations from the as shown in Figure 3 and Table 3. Although our choice offers
MP2—R12 limit determined by Klopper et al. This rms erroris no numerical accuracy advantage over those of Wilson and
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TABLE 3: Convergence of the { + /)~ Extrapolated MP2/cc-pVnZ Correlation Consistent Basis Set MP2 Correlation Energy
(in hartree atomic units) to the MP2—R12 Limit (see eq 19)

-0.320

E2(DZ,TZ) E2(DZ,TZ,Q2) E2(TZ,Q2) E2(TZ,52) E2(TZ,62) MPR12
CoH> —0.34128 —0.34670 —0.34664 —0.34625 —0.34600 —0.3465
CHs —0.21957 —0.22057 —0.22056 —0.21993 —0.21965 —0.2193
CcO —0.39475 —0.40454 —0.40445 —0.40485 —0.40466 —0.4053
CO, —0.66999 —0.68741 —0.68724 —0.68781 —0.68738 —0.6887
H> —0.03472 —0.03439 —0.03439 —0.03434 —0.03431 —0.0343
H0O —0.29586 —0.30189 —0.30184 —0.30202 —0.30153 —0.3011
HCN —0.38076 —0.38789 —0.38782 —0.38778 —0.38754 —0.3880
HF —0.31195 —0.32043 —0.32035 —0.32095 —0.32056 —0.3197
NH3 —0.26316 —0.26626 —0.26623 —0.26594 —0.26547 —0.2650
N2 —0.41299 —0.42178 —0.42170 —0.42209 —0.42193 —0.4225
H.CO —0.44083 —0.44954 —0.44946 —0.44953 —0.44919 —0.4495
F —0.59631 —0.61165 —0.61150 —0.61297 —0.61269 —0.6136
rms error 0.00956 0.00096 0.00100 0.00067 0.00065
Neon Atom 5 Acetylene
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Figure 3. The MP2 correlation energy for the neon atom calculated Figure 4. The MP2 correlation energy for acetylene calculated with
with the Dunning sequence of cc-pVnZ correlation consistent basis setsthe Dunning cc-pVnZ basis set®) converges smoothly withn(ax +

(®) converges monotonically to the limiE®(n=e), which is the 15)73, wherelmax is the maximum angular momentum for the basis set.
intercept,E@(x=0), in this graph. The four calculations & 3, 4, 5, The function becomes linear fomax = 3. The CBS PNO ex-
and 6) can be fit equally well with either an exponential function, trapolated energiesr) show a linear convergence withx + /2) 73,
—0.3160+ A exp(—an), or with a function,—0.3204+ Ag(Imax+ ¥2) 73, beginning withlnax = 2, and thus permit such extrapolations from

wherelnax = n is the maximum angular momentum for each basis set. smaller basis sets. These sequences are both in good agreement with
However, only the extrapolation based dqu{ + ¥2) 2 gives a value the explicit interelectronic cusp MPZR12 results of Klopper et &f.

for the interceptE@(Ina=%) = —0.3204, in agreement with both the

MP2-R12 value of Kloppef! —0.3200, and the sequence of limit andj = 5 is necessary to fit the cc-pVDZ energy (Figure 4 and
E@( < Imax = 3, 4, 5, 6, and 9) calculationsr} from Jankowski and  Table 3). However, this three parameter fit of three cc-pVnZ
Malinowski, converging tE®(Ina=e) = —0.3201%* energies If = 2, 3, and 4) is of no obvious value, since we
obtain equally good extrapolations if we simply start our two-
parameter fit with the cc-pVTZ basis set (ire= 3 and 4; see
Figure 4 and Table 3).

We note that even though there is virtually no difference in
the quality of the fit to the set of four cc-pVnZ energies (Figure
3), the extrapolation using eq 19 reduces the error by 1 order
of magnitude relative to eq 16, demonstrating the importance

Dunning in the present context, we find it more satisfying to
achieve success with the simplest extrapolation based on eq 13
We have used just two pointE@(lnax) andE@(Imaxg), o that

our single term extrapolation is linear

{UraeT 12) Nz 12) 2 = (ot 1) 1} (29) of basing extrapolations on a fundamental mathematical analysis
of the form for the asymptotic convergerd&? rather than
and thus is rigorously size-consisteintaddition, eq 19 proides simple empiricisn?? The extrapolated second-order MP energy

a basis for easily obtaining analytical dedtives of the components in Table 3 provide a dramatic improvement over
extrapolated MP2 basis set linfit A second term with a= 1/, the raw data in Table 2. The excellent agreement with both the
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TABLE 4: Convergence of the Pair Natural Orbital Extrapolated Complete Basis Set Second-Order, CBS2/cc-pVnZ,
Correlation Consistent Basis Set MP2 Correlation Energy (in hartree atomic units) to the MP2-R12 Limit

E2(DZ) E2(TZ) E2(Q2) E2(52) E2(62) MP2R12
CoH» —0.32147 —0.33801 —0.34239 —0.34415 —0.34466 —0.3465
CH, —0.20536 —0.21451 -0.21731 —0.21839 —0.21862 —0.2193
co —0.36565 —0.38988 ~0.39754 —0.40132 —0.40257 —0.4053
CO, —0.61816 —0.66127 —0.67496 —0.68139 —0.68355 —0.6887
H, —0.03283 —0.03393 —0.03416 —0.03421 —0.03423 —0.0343
H,0 —0.26293 —0.28767 —0.29483 —0.29815 —0.29926 —0.3011
HCN —0.35593 ~0.37687 —0.38252 —0.38515 —0.38590 —0.3880
HF —0.27285 —0.30263 —0.31231 —0.31645 ~0.31797 —0.3197
NHs —0.23939 ~0.25595 ~0.26100 ~0.26319 ~0.26374 —0.2650
N, —0.38353 —0.40846 —0.41524 —0.41879 —0.41995 —0.4225
H,CO —0.40538 —0.43325 —0.44156 —0.44534 —0.44668 —0.4495
F. —0.52774 —0.58030 —0.59847 —0.60561 —0.60850 —0.6136
rms error 0.04429 0.01667 0.00793 0.00409 0.00237

TABLE 5: Convergence of the { + 1/,)~2 Extrapolated Complete Basis Set Second-Order CBS2/cc-pVnZ Correlation Consistent
Basis Set MP2 Correlation Energy (in hartree atomic units) to the MP2-R12 Limit

E2(DZ,TZ) E2(DZ,QZ) E2(Dz,52) E2(DZ,62) MP2R12

CoH, —0.34749 —0.34673 —0.34650 —0.34606 —0.3465

CHs —0.21976 —0.21978 —0.21974 —0.21942 —0.2193

CO —0.40377 —0.40414 —0.40502 —0.40480 —0.4053

Co, —0.68599 —0.68671 —0.68794 —0.68750 —0.6887

H> —0.03457 —0.03443 —0.03435 —0.03431 —0.0343

H.0O —0.30185 —0.30144 —0.30180 —0.30145 —0.3011

HCN —0.38888 —0.38803 —0.38818 —0.38771 —0.3880

HF —0.31970 —0.32047 —0.32097 —0.32070 —0.3197

NH3 —0.26544 —0.26547 —0.26566 —0.26521 —0.2650

N2 —0.42275 —0.42180 —0.42245 —0.42215 —0.4225

H.CO —0.44923 —0.44905 —0.44949 —0.44917 —0.4495

F —0.61043 —0.61310 —0.61368 —0.61337 —0.6136

rms error 0.00137 0.00079 0.00053 0.00053
explicit r1, calculations of Klopper et df and theE@)(l < 9) the relative performance of the PNO extrapolations does not
calculations of Jankowski and Malinows¥iclearly demon- improve with increasinginax In either case, one might reason-
strates the virtues of extrapolation based on eg'#3. ably expect a correlation of this residual error withug+ 1/2) 3,

To compare extrapolation schemes, we have also employedas indicated in Figure 4. If one extrapolation is good, perhaps
the Dunning correlation consistent basis sets for our pair naturaltwo could be better.
orbital CBS extrapolation algorithm (eq 1%).152526We have The results of this double extrapolation are presented in Table
considerable experience with spd basis sets for which we set5. The dramatic improvement ovieoth Tables 3and4 is rather
Npmin, the minimum number of PNOs, equal to 5, and with spdf remarkable for thelgax + 1/2)~2 extrapolation of the cc-pvVDZ
basis sets for which we sétnin equal to 10. After some  and cc-pVTZ PNO extrapolated results, which givesbsolute
experimentation, we have selected thgn values 5, 10, 21, accuracy obetter than 1 kcal/mobith the largest calculation
35, 57 for the cc-pVDZ through cc-pV6Z basis sets. These using just a [4s3p2df/3s2pd] basis set. These calculations are
values correspond to the sequerdds2s2p,+3d, +3s3p4f, quite routine for molecules as large as naphthalene! Application
+4d5g,+4s4p5f6h. The results in Table 4 give a substantial to several Gy species required-12 days each (depending on
improvement over the raw second-order energies in Table 2the specific example) on an SGI Origin 2000 with eight 193
but are clearly inferior to thelfax + /2)~2 extrapolations in MHz R10000 processors running Gaussiarf98.
Table 3. Our CBS-4, CBS-Q, and CBS-APNO moégésnploy To preserve size consistency for the CBS PNO extrapolations,
basis sets that are roughly comparable to the cc-pVDZ, we have restricted thd.fx + 1/2)~2 extrapolation to a linear
cc-pVTZ, and cc-pvVQZ correlation consistent basis sets, form (eq 19). The new double extrapolation that we propose
respectively, and thus give absolute accuracies before empiricalemploys this linear extrapolation of pairs of CBS2/cc-pVnZ
corrections that are also roughly comparable to the first three calculations and thus is rigorously size-consistent. Note that
columns of Table 4. Of course, much of this absolute error nonlinearN-parameter lfax + @)~ extrapolations employing
cancels when we calculate chemical energy changes, and thdeast-squares fits to more thaicc-pVnZ energies aneot size—
remainder is reduced with the small empirical corrections that consisteng435
are included in the definitions of these models. Nevertheless, F. Extrapolation of the Higher Order Contributions. The
the magnitude of the absolute errors in Table 4 is sobering andhigher order contributions to the correlation energy [i.e. CCSD-
obligates us to reconsider the design of these models. (T)—MP2] are more than an order of magnitude smaller than

E. If One Extrapolation Is Good ... The residual underes-  the second-order contributions. However, the basis set conver-
timate of the magnitude of the second-order energy componentgence to the CCSD(FH)R12 limit (Table 6) does not follow
after pair natural orbital extrapolations can have two possible the simple linear behavior found for the second-order correlation
origins. Either the number of PNOs employed for the extrapola- energy (Figure 5). This is a consequence of the interference
tion was too small for the asymptotic formula in eq 14 to be effect described above in eqs 10 and 11. Since the full Cl or
applicable or the correlation consistent basis sets did not describeCCSD(T) basis set truncation error is attenuated by the
these PNOs to sufficient accuracy. The former is less likely since interference factor:
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TABLE 6: Convergence of the cc-pVnZ Basis Set Higher Order [i.e. CCSD(T) MP2] Correlation Energy (in hartree atomic

units) to the CCSD(T)—R12 Limit

cc-pvDZ cc-pVTZ cc-pvQZz cc-pV5Z cc-pVezZ CCSD(¥R12

CoH, —0.0277 —0.0285 —0.0258 —0.0238 —0.0225 —0.0201
CH, —0.0270 —0.0265 —0.0246 —0.0232 —0.0225 —0.0213
CO —0.0181 —0.0200 —0.0180 —0.0158 —0.0144 —0.0120
CGo, —0.0148 —0.0189 —0.0165 —0.0132 —0.0109 —0.0069
H. —0.0083 —0.0077 —0.0072 —0.0069 —0.0068 —0.0068
H,O —0.0125 —0.0136 —0.0122 —0.0104 —0.0094 —0.0074
HCN —0.0206 —0.0217 —0.0194 —0.0172 —0.0159 —0.0133
HF —0.0065 —0.0081 —0.0075 —0.0060 —0.0049 —0.0034
NH; —0.0199 —0.0202 —0.0184 —0.0168 —0.0159 —0.0140
N, —0.0145 —0.0166 —0.0144 —0.0122 —0.0108 —0.0087
H.CO —0.0255 —0.0266 —0.0243 —0.0219 —0.0203 —0.0178
F> —0.0179 —0.0216 —0.0211 —0.0187 —0.0168 —0.0146
rms error 0.0059 0.0074 0.0057 0.0036 0.0022

Acetylene
0.000 b L e b s Lo 1L
1—*—CBS limit from Eq.(21)
| —=—Scaled CBS: Eq.(22)
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Figure 5. The higher order correlation energy for acetylene, CCSD-
(T) — MP2 (@), converges slowly and nonlinearly with the size (i.e.
n = Inay Of the cc-pVnZ basis set. For basis sets larger than tfjple-
plus polarization (i.elmax = 3), the CBS interference correction (eq
20) (v) dramatically accelerates convergence to the CCSBRI)?2
limit determined by Klopper et & An empirical scale factor (eq 21)
can extend the utility of this interference correction to the cc-pVTZ
and cc-pVDZ basis set®].

CCSD(T)fgs = CCSD(T)/ce-pVnzt+
[nt Fact E?/ .z — E®/cc-pVnz (20)

it follows by simply subtracting MP2/CBS— MP2/cc-pVnZ
from both sides that the CBS limit for the higher order
correlation energy is

AEccsprfcss = AEccsprfCC-pVNZ+
{[nt Fact[+ 1}{E®/cgs — E?/cc-pVnz (21)

whereAECCSD(T)= CCSD(T)— MP2. This CBS extrapola-

tion reduces the errors in the cc-pVQZ and cc-pV5Z higher order

energies (Figure 5). A simple scaling to reduce the CBS
correction to the cc-pVDZ and cc-pVTZ energies

AECCSD(T{ cBS — AECCSD(T{ cc-pvVnZ+
{Scalé{nt Factl— 1}{E®/ s — E®lcc-pVnZ (22)

reduces the rms errors below 1 kcal/mol for both (Table 7).

We can now combine the extrapolated second-order correla-
tion energies from Table 5 with the extrapolated higher order
contributions from Table 7. Keeping in mind the higher cost of
the CCSD(T) calculations, we combine E2(DZ,TZ) from Table
5 with the scaled CCSD(T)/DZ from Table 7, E2(DZ,QZ) from
Table 5 with the scaled CCSD(T)/TZ from Table 7, E2(DZ,52)
from Table 5 with the unscaled CCSD(T)/QZ from Table 7,
and E2(DZ,6Z) from Table 5 with the CCSD(T)/5Z from Table
7. The rms deviations from the CCSDEAIR12 correlation
energie& are 1.74, 0.93, 0.54, and 0.41 kcal/mol, respectively.
The agreement between these basis set extrapolations and the
explicit ri, results is certainly encouraging.

G. Invariance. The PNO extrapolations in Tables 4 and 5
require localization of the occupied SCF orbitals to ensure size
consistency. Thelfax + 1/2)~2 extrapolations in Table 3 are
rigorously invariant to unitary transformations of the occupied
SCF orbitals. The lack of such invariance has been a weakness
of the PNO extrapolations. For example, PNO extrapolation with
the cc-pVTZ basis set for SOgives —729.71 mk for the
estimated valence shell MP2 limit if we use the population
localized® occupied SCF orbitals, but726.71 mE if we use
the Boys localizett SCF orbitals. Further extrapolation using
eq 19 increases the value +6/57.87 mi for the population
localized MP2 limit, which is in somewhat better agreement
with the new value obtained with Boys localization756.88
mE,. Localization is still required for rigorous size consistency,
but the results are now less sensitive to the choice of localization
scheme. The residual lack of MP2 invariance will be reduced
further by the interference factor applied to the CCSD(T) limit.

The approach to invariance seems to be a natural consequence
of the increased accuracy with the double extrapolation. We
also note a significant reduction in the importance of diffuse
basis functions. The population localized CBS2/aug-cc-pVTZ
correlation energy for S{ds —738.05 mE, or 8.34 mE below
the value without diffuse functions. The new double extrapola-
tion converts this to—758.47, only 0.6 mkbelow the value
without diffuse functions.

VII. Conclusions
The qualitative behavior of GVB pair energies leads us down

correlation energy by 1 order of magnitude (Table 7) but aroad to a better understanding of basis set truncation errors at
seriously overcorrects the cc-pVDZ and cc-pVTZ higher order both the MP2 level and at the CCSD(T) level. The shell structure
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TABLE 7: Convergence of the PNO CBS Extrapolated (eq 21) cc-pVnZ Higher Order [i.e.

Energy (in hartree atomic units) to the CCSD(T)-R12 Limit

Petersson and Frisch

CCSD(T)- MP2] Correlation

cc-pvDZ cc-pVTZ cc-pvQz cc-pV5Z cc-pVezZ CCSD(¥R12

CoH, —0.0084 —0.0178 —0.0202 —0.0204 —0.0203 —0.0201
CH, —0.0136 —0.0202 —0.0214 —0.0213 —0.0213 —0.0213
CO 0.0013 —0.0089 —0.0121 —0.0121 —0.0120 —0.0120
CGo, 0.0164 —0.0007 —0.0066 —0.0071 —0.0070 —0.0069
H. —0.0057 —0.0065 —0.0066 —0.0066 —0.0066 —0.0068
H,O 0.0009 —0.0056 —0.0079 —0.0078 —0.0077 —0.0074
HCN —0.0008 —0.0106 —0.0135 —0.0135 —0.0136 —0.0133
HF 0.0059 —0.0002 —0.0030 —0.0032 —0.0031 —0.0034
NH3 —0.0060 —0.0130 —0.0145 —0.0145 —0.0145 —0.0140
N, 0.0049 —0.0052 —0.0083 —0.0084 —0.0084 —0.0087
H.CO —0.0038 —0.0144 —0.0178 —0.0179 —0.0178 —0.0178
F> 0.0047 —0.0073 —0.0126 —0.0135 —0.0133 —0.0146
rms error 0.0085 0.0036 0.0006 0.0004 0.0004

scalé 0.31 0.68 0.96 0.99 0.95

scale rms 0.0015 0.0011 0.0006 0.0004 0.0004

a Equation 22.

of atomic pair natural orbitals implies a linean ¢ /)3
asymptotic convergence of the second-order cc-pVnZ correlatio
energies, which in turn offers the possibility of analytical
derivatives for the MP2 basis set limit. A more immediate if
less ambitious result focuses on the single point MP2 limit.
Without any extrapolation, the very large [7s6p5d4f3g2hli,-
6s5p4d3f2glh] cc-pV6Z basis sets are still 5.3 kcal/mol from
the MP2-R12 limit for a test set of 12 small molecules. In
contrast, a linear sizeconsistent I(+ 1/,)~3 extrapolation of
just the MP2/cc-pVTZ and MP2/cc-pVQZ energies is accurate
to +0.60 kcal/mol. If we try to further reduce the basis sets to
cc-pVDZ and cc-pVTZ, the error in the extrapolation increases
to £6.0 kcal/mol. However, a new double extrapolation provides
the complete basis set MP2 limit with an absolute accuracy of
+0.86 kcal/mol without recourse to basis sets larger than cc-
pVTZ [4s3p2d1f,3s2pld]. The interference effect can then
provide an equally accuratet0.93 kcal/mol) complete basis
set CCSD(T) limit. Although we still are a long way from a
complete new “model chemistry? the absolute accuracy that

n

we have now achieved makes it clear that a new generation of

model chemistry methods will no longer require significant error
cancellation and probably can dispense with “number of electron
pairs” type empirical correctior’:43
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