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Some of the challenges facing scientists in the area of the electronic structure and properties of solids are
reviewed. At a time when computational advances have made possible high-quality calculations, not even
conceivable 10 years ago, the article stresses the importance of going beyond the raw output of the calculation
and understanding where the result originates. The areas selected for study include the Fermi surface and
charge density waves, the stability of solids and the structures of solids under pressure, metal-insulator
transitions, the method of moments, superconductivity, and the use of a relatively new technique for the
study of chemical bonding, the electron localization function (ELF).

1. Introduction

Understanding the structures and physical properties of
materials, such as hardness and the occurrence of metal-
insulator transitions, has long been a goal of the chemist and
materials scientist alike. Our understanding of the structures
of molecules and solids has progressed dramatically in the past
decade driven by computational advances in terms of both
hardware and basic theory. In the area of the solid state
especially, this period has seen the coming together of “chemi-
cal” and “physical” approaches to solids.1-3 This period has
witnessed some remarkable successes. The ability to study a
wide range of complex materials using the tight-binding with
overlap, or extended Hu¨ckel, approach has been well-estab-
lished.2 The success of tight-binding calculations to study
complex systems by employing the technique of second moment
conservation is an important advance.4 Importantly, over this
period there has been a transfer of tight-binding technology from
the physical theorist to chemical theorist and in turn to the
practicing solid-state chemist. In terms of numerically accurate
methods, the ability from pseudopotential-based calculations to
predict the transition pressure from one structure to another5

and the prediction of properties such as hardness are milestones.
The local density approximation6 has provided for solids an
effective way to estimate many-body effects. By using general-
ized gradient corrections (GGC), it has been possible with full
potential LAPW calculations7 to effectively probe the factors
influencing the spin state of ions in solids or, more generally,
the magnetic or localization behavior of electrons. (See ref 8
for a succinct description of the present state of this rapidly
advancing field.) The LMTO method9 is proving to be an
extremely useful tool with which to study the electronic structure
of solids, especially close-packed ones. (It is regarded by many
hard-line theorists as an “old-fashioned” approach but has many
advantages for the structural chemist.) Undoubtedly, the
dramatic change in computational power over the past few years
has accelerated the application of such methods to “real”
systems. This has brought its problems, however. We now
have even more numbers. The question of how to organize
them and develop new insights and models of use to the chemist
has certainly become a challenge.
In terms of the transfer of band-structure technology from

physicist to chemist, quite striking is the often routine use of
tight-binding theory2 in its extended Hu¨ckel implementation by
experimentalists. There are now an increasing number of papers

published (see for example refs 10-12) where this type of
theoretical approach complements diffraction, magnetic, con-
ductivity, and other physical methods in providing insights into
the structure, both geometric and electronic, of a material. The
role of the chemist in understanding the electronic structure of
solids has for many years been “to add the atoms” and thus
endeavor to view solids as individuals, rather than using the
solid state physicists’ often generic approaches using the ideas
of quasiparticles. This particular role has been enhanced as the
number of experimental solid-state chemists with a firm
understanding of the band model increases. Such tight-binding
calculations are computationally economical and often very
revealing. In terms of quantitative results involving bond
lengths and cohesive energies, they are not to be trusted (but
see the discussion in section 5). The same caveats apply to
their molecular analog, of course. In the right hands, the results
have been used to provide extremely useful pictures of solid-
state electronic structure.
Of particular interest in this direction is a recent development

in the use of the electron localization function (ELF)13 to explore
bonding in solids. From a given set of occupied orbitals the
method highlights those areas where paired electrons are most
likely to be found. (We discuss this further in section 6.) The
method apparently removes the arbitrariness often associated
with the construction of localized functions from a delocalized
one. The results seem virtually independent of the use of tight-
binding, ab initio, or LMTO calculations as input. The
challenge, as we have already noted, is to explore the real
meaning behind the results and to try to build a picture of
chemical bonding from the results. The ELF approach has real
promise, and the development of global pictures from such
calculations is a challenge for the future.
Numerically more accurate calculations are of two types:

extensions of theab initiomethod of the molecular chemist to
solids and the use of physicists’ approaches such as the LMTO
and LAPW methods. In their full potential implementation
which makes them as nearlyfirst principlescalculations as one
can get (notice the difference between chemists’ and physicists’
terminology here), they can be very accurate in balancing one-
electron and many-body terms in the energy. The extent of
the utility of ab initio calculations in solids is presently being
explored.14 Just as there are problems with this approach in
large molecules and in molecules where HOMO and LUMO
are close in energy, so in solids the method has its limitations
when dealing with metals. The next few years will see how
useful the approach is in general to look at solids in a reallyX Abstract published inAdVance ACS Abstracts,June 15, 1996.

13263J. Phys. Chem.1996,100,13263-13274

S0022-3654(95)03650-1 CCC: $12.00 © 1996 American Chemical Society



quantitative way. The problem with all of these many-electron
models is their voracious appetite for computer time, a concern,
of course, which may be alleviated with time. (History has
shown, however, that we will always be demanding more from
our calculations than we have in terms of computational
resources.) This article shows how electronic structure calcula-
tions may be used to study a selected range of topics.

2. Fermi Surface and Charge Density Waves

One of the most important concepts in the area of solid-state
structure is that of the Fermi surface.15 It is of vital interest to
the solid-state physicist interested in the transport properties of
solids. The surface is the constant energy plot ink space of
the highest occupied energy levels of the solid atT ) 0. Put
another way, it represents the junction between filled and empty
levels. Obviously then, for a system where the energy bands
are filled such that there is a gap between highest occupied and
lowest unoccupied levels there is no Fermi surface at all, and
thus the concept only applies to metals. The shape of the Fermi
surface varies with electron count. Figure 1a shows the
computed surface for a square net made up of hydrogen 1s
orbitals. Figure 1b,c shows how the Fermi surface changes for
the less-than-half-full and greater-than-half-full bands. All of
these surfaces are described as being two-dimensional in
character since they contain a closed loop. An open surface
indicates a one-dimensional system. These two cases are
experimentally readily distinguished, in principle at least.16

Particularly interesting are the predictions made when a
section of the Fermi surface can be moved by a vectorq so
that it becomes superimposed on another section of the surface
as in 1. This is described as Fermi surface nesting, the two

parts nested by the vectorq. If large sections of the Fermi
surface are nested, then this can lead to an electronically driven
geometrical instability. The vectorq defines the details of how
the structure changes on distortion. For the simple one-
dimensional case, ifq ) b/2 then a distortion which leads to a
doubling of the unit cell in this direction is indicated. In general,
if q ) b/n then a distortion leading to a cell n times as large as
the original one is predicted. This is just the classic Peierls
distortion of the one-dimensional chain2 (2). The hypothetical
chain of equidistant hydrogen atoms with a half-filled band is
an example where the Fermi surface is completely nested and
n ) 2. (In one dimension the Fermi surface is just a pair of
points in the first Brillouin zone.) One can immediately see
that the Peierls distortion has many features similar to those
associated with the Jahn-Teller distortion in molecules. In2
notice that a metal has been converted to an insulator as a result
of the distortion.

In more than one dimension some other considerations apply.
The nesting of the Fermi surface may not be complete. For
example, in Figure 1b,c the curvature of the Fermi surface which
is generated by doping removes such nesting. In more complex
systems only sections of the surface may be translated in this
way. This means that the driving force for distortion is reduced
and (as in the 1-D case too) has to compete with the elastic
forces of the underlying structure which generally favor the
undistorted structure. Frequently, although many states will be
removed from around the Fermi level on distortion, a gap will
not be opened up (as in2). As a result, although metallic, the
distorted material is not quite as metallic as before. (TaS2 is
an example here.) Frequently there is a critical temperature
below which the distortion, or charge density wave (CDW),16,17

sets in. The distortion does not necessarily need to be
commensurate with the lattice, and incommensurate charge
density waves wheren is not an integer are in fact frequently
found. Diffuse X-ray scattering has been a particularly useful
tool18with which to study these systems and identifyq. Diffuse
scatterings above a critical temperature develop into satellite
reflections below this transition temperature, their spacings
determined byq.
Particularly impressive over the past few years have been

the prediction of the vectorq from tight-binding calculations
of the extended Hu¨ckel type by (especially) Canadell and
Whangbo.15 The systems which have been studied include
metal oxides, particularly the bronzes, metal chalcogenides, and
the molecular metals, the latter systems which contain largely
organic molecules that are either intrinsically or extrinsically
doped with electrons or holes (i.e., are either reduced or
oxidized). We will discuss one example from the bronze area.
The molybdenum and tungsten oxides provide a wealth of

interesting structural and electronic features.19 The blue bronzes,
A0.3MoO3 (A ) K, Rb, Tl), are layered materials built up from
Mo10O30building blocks.20 A metal-to-semiconductor transition
occurs at around 180 K, and diffuse X-ray scattering shows that
at room temperatureq≈ 0.72b* (an incommensurate distortion),
whereb is the crystallographicb axis. As the temperature is
lowered, thenq approaches21 the commensurate value of 0.75b*.
A slice through the dispersion picture for this material22 is shown
in Figure 2. The Fermi level cuts the lowest two bands but
only just misses the third highest (calculated energy separation
0.012 eV). Determination ofq from the point where the Fermi
level cuts the highest bands leads toq ) 0.75b*. (This value
is not obvious from the dispersion diagram of Figure 2. One
has to study the complete Fermi surface, rather than a small
part of it, as shown in Figure 2.) This is in exact agreement
with experiment at low temperatures and tells us why the blue
bronze undergoes a metal-semiconductor transition. (Calculat-
ing the temperature at which is occurs is more difficult. It
depends upon the accurate assessment of the driving force
associated with the electrons at the Fermi surface and the elastic
forces of the deeper-lying ones.) The electronic structural details
though are the key in understanding why there is a temperature
dependence onq, an unusual result. Because of the low-lying
third band, thermal depletion of the second band occurs as the
temperature increases, thus changing its occupancy, lowering

Figure 1. The Fermi surface for the square net of hydrogen atoms
with (a) a half-filling of the energy band and (b, c) just under half and
just over half-filling, respectively.
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the Fermi level, and, as it turns out, movingq a smaller value
alongb*. Tracing the origin of the band structure back to the
details of the structure leads to an understanding of this
process.22

Similar studies have been performed with molecular metals.
Here, the tight-binding approach has come into its own. Not
only are “better” calculations at present difficult to do for such
extended systems, but the tight-binding approach gives excellent
agreement with experiment. Future directions in this area will
include surfaces, where Kohn anomalies (vibrational softening)
have been well studied23 for systems such as Mo, W(100). Here
interest lies in the surface Fermi surface.

3. Stability of Solids

The general question of the stability of solids, identification
of those which are “stable” and those which are not, is an
exceedingly tough one to answer, since even for an AB solid,
in principle all of the AB1-x space needs to be examined
energetically. This is at present an impossible task, and even
study of a small part of the space is demanding in terms of
computational time and theoretical rigor. Of course, one can
always restrict the problem to comparison of the energies of a
small subset of structures. Here we describe two studies which
circumvent some of these problems, that of the origin of
nonstoichiometry in ScS and the stabilization of high oxidation
states of copper by generation of a ternary oxide containing an
electropositive element.
Nonstoichiometry in rock salt oxides and chalcogenides is

widespread,24 but although the chalcogenides of the early
transition metals form a variety of ordered and disordered phases
extending to either side of the stoichiometric 1:1 composition,
the fact that Sc leaves the solid on heating ScS rather than sulfur
is somewhat surprising.25 The cohesive energy of ScS is around
250 kcal/mol so that the solid itself is composed of strong bonds
between the atoms. Chemists “explain” such a result by blandly
stating that the Sc3+ generated by metal atom loss is “more
stable” than the Sc2+ it replaces. But why? There have been
early studies using the KKR method,26 but a mechanism which
leads to stabilization of metal vacancies was initially indicated
from tight-binding calculations using self-consistent charge
iteration and then verified using first principles LMTO calcula-
tions. The nub of the stabilization mechanism is shown in
Figure 3.27 Loss of metal but not of chalcogen leads to an
increase in the oxidation state of the remaining metal atoms,
Sc2+ f Sc3+. Since the levels at the very bottom of the metal
d band are almost entirely metal in character in this system,
they are expected to become more tightly bound as a result of

this change in oxidation state by simple analogy with the
variation of atomic ionization energy with charge. Thus, the
metal and chalcogen levels become closer in energy on loss of
Sc, leading to an increase in their mutual interaction as metal
is lost. The important result is stabilization of the filled, largely
sulfur, levels. This leads to a stabilization associated with metal
atom loss. Later transition metal chalcogenides such as FeS
and MnS will not exhibit the same behavior since here the filled
metal levels contain a significant amount of sulfur character,
and their susceptibility to energetic change with metal oxidation
state is smaller. The results from the numerically more accurate
LMTO calculations28 bear out these found from the charge-
iterated tight-binding calculations.27

Figure 4 shows the computed electronic density of states for
stoichiometric and defective ScS. The qualitative model
described above may be reinforced in quantitative terms by
calculation28 of the mean energy of the (largely) sulfur 3p band
by evaluating the expression∑nie(ni)/∑ni, where there areni
states with an energyei. The results are found to be-0.4626,
-0.4659, and-0.4758 Ry for ScS, Sc0.875S, and Sc0.75S,
respectively, showing that in terms of lowering the energy of
the sulfur 3p band the order is Sc0.75S > Sc0.875S > ScS, i.e.,
that there is indeed a driving force for loss of metal (1 Ry)
13.6 eV). They also show that Sc-S bonding becomes stronger
when Sc is lost. The corresponding figures calculated for MnS
and Mn0.75S are -0.5538 and-0.5499 Ry, respectively,

Figure 2. A part of the dispersion picture for the blue bronze AxWO3.
The nesting vector itself has to come from the full Fermi surface.
Adapted from ref 22.

Figure 3. The mechanism for the stabilization of nonstoichiometric
ScS.

Figure 4. Calculated density of states for ScS and of Sc0.75S. Adapted
from ref 28.
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showing quantitatively that the strength of the Mn-S bonding
in the stoichiometric compound is stronger than in the Mn-
deficient one. This is in the opposite direction to the results
for ScS and is in agreement with the lack of ready loss of metal
from MnS and later metal chalcogenides. Notice that although
the tight-binding model gave invaluable clues as to the electronic
situation here, quantitative calculations which can be trusted in
numerical terms are needed to firmly establish the mechanism.
Such complementarity of the two types of calculation is
invaluable.
A second example is the electronic model developed to

understand the empirical observation29 that high oxidation states
of transition metals may often be stabilized as their oxide or
nitride by the addition of an electropositive element. Thus,
although copper is known as Cu(I) and Cu(II) in compounds
with oxygen, no binary copper(III) oxide (Cu2O3) is presently
known. Cu(III), however, may be stabilized as a ternary oxide
as in KCuO2. Similar observations are found for other oxides
and nitrides. Bi(IV) is not found as a binary oxide, but KBiO3
exists. Ce(IV) is not known as a binary nitride, but BaCeN2 is
a stable compound. Shown in Table 1 are the total number of
(n + 1)s, (n + 1)p, andnd electrons calculated30 using the
LMTO method for Cu2O, CuO, Cu2O3, and KCuO2. Notice
that contrary to the expectations of chemical intuition, of 10, 9,
and 8 valence electrons for Cu(I), Cu(II), and Cu(III), respec-
tively, we find 10.35, 10.32, and 10.74 electrons, a result which
does not follow this trend. The d-electron populations do follow
the expected decrease but with much smaller change than
expected: 9.34, 9.27, and 9.14. The integral numbers of
electrons used in our statement above assume the occupancy
of “metal orbitals” which are 100% metal in character, and so
these figures for the total number of “metal” electrons are a
measure of the copper 4s, 4p, and 3d character which is mixed
into the filled oxygen 2p band as a result of covalent interactions.
The values for 4s and 4p in Table 1 indicate a large rehybrid-
ization at the metal atom (especially involving 4p) from one
system to another. Since the metal 4s, 4p, and 3d levels change
in energy with oxidation state, their interaction with the oxygen
orbitals increases as their energy mismatch with oxygen 2p
decreases.
Perhaps the most interesting comparison of the figures in

Table 1 is that the total number of metal electrons, roughly equal
in CuI2O, CuIIO, and CuIII 2O3, is much larger in KCuIIIO2. In
other words, the bonds are computed to be much more covalent
(actually in accord with early ideas29 of Sleight) and thus
presumably stronger in KCuO2. This arises through this increase
in metal 4s, 4p, and 3d involvement with the oxygen levels. It
comes about because in KCuIIIO2 there is an effective transfer
of charge from potassium to oxygen, leading to a raising of the
oxygen levels, a decrease in the metal spd-oxygen 2p separa-
tion, and then, on energy gap arguments, the generation of a
stronger interaction between copper and oxygen, i.e., an increase
in Cu-O covalency. This interaction is particularly important
for Cu(III), where the metal levels lie closest to those on oxygen.
This is a result which has a similarities to the electronic

underpinnings27,28 of the nonstoichiometry of ScS (to give

Sc1-xS) described above. Both pairs of levels are driven closer
to each other energetically either as the average oxidation state
of the metal increases or as electron transfer to oxygen occurs.

4. Structures of Solids under Pressure

Of particular interest in providing clues as to the factors which
influence the structures of solids and of great importance in
the geophysical world is the behavior of solids under pressure.
For several years the stage has been set by the pioneering work
of Cohen and his collaborators. A view of the field in 1979
can be found in ref 5. Here the use of pseudopotential-based
calculations was readily able to mimic experimentally observed
structural changes and also give good agreement with the
equation of state itself. Figure 5 shows the calculated31 behavior
under pressure of Si and Ge. A more recent example is the
determination of the structure of elemental hydrogen under
pressure, a result of interest to Jovian geophysicists. The initial
report was a dramatic one. The calculated high-pressure
structure, a metal, was calculated32 to have an enormously high
(over 200 K) critical superconducting transition temperature.
A later study found33 a slightly different structure to be more
stable under pressure but with a much reducedTc. These results
highlight a problem with such studies. It is not possible to
explore the entire geometrical space open to the structure, and
so one is never sure that the structure found is the lowest energy
one. Later studies may well find a lower energy variant.

TABLE 1: Calculated Electron Populations and Band
Barycenters (Ry) for Some Copper Oxides

compd Ns
a Np Nd Ntot C (Ms)b C (Mp) C (Md) C (Op)c

Cu2O 0.546 0.464 9.340 10.350-0.308 0.856 -0.286 -0.502
CuO 0.480 0.564 9.271 10.316-0.327 0.833 -0.327 -0.410
Cu2O3 0.549 0.785 9.008 10.343-0.436 0.721 -0.553 -0.507

-0.453
KCuO2 0.681 0.918 9.138 10.737-0.504 0.644 -0.542 -0.446

a N ) number of electrons per copper.b C ) energy barycenter of
bands located on metal (M) and oxygen (O).c These two figures for
Cu2O3 refer to the two different types of oxygen atom in the structure.

Figure 5. Calculated behavior under pressure of Si and Ge. Adapted
from ref 31.
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Values for the compressibility of solids emerge naturally from
such studies. It is interesting to note that it is harder
experimentally to compress Sc1-xS than ScS, a result reproduc-
ible by calculation (M. T. Green, unpublished results). These
results run contrary to the normal rule which associates higher
compressibilities with smaller numbers of vacancies.
Another example, which has a moral associated with it,

centers around the recent discussions concerning the prediction
of hard materials. In an inventive theoretical paper Liu and
Cohen, predicted34 that the compoundâ-C3N4 if it had the
knownâ-Si3N4 structure35 would have a hardness comparable
with or larger than that of diamond. In this structure (Figure
6) each carbon is coordinated by four nitrogen atoms, and
correspondingly each nitrogen atom is three-coordinate. The
equilibrium volume ofâ-C3N4 was determined by calculating
the total crystal energy as a function of a single scale parameter.
This interesting theoretical result led to experimental efforts

to make the new material. Carbon nitride films were made by
reacting nitrogen atoms with gaseous carbon generated by laser
ablation.36 However, the largest percentage of nitrogen found
in the films made in this way (45%) is much less than that
expected forâ-C3N4 (57%). Further work was not conclusive;37

the nitrogen content of such films ranged from 0 to 50%, and
there was some significant oxygen contamination (∼5-10%).
The major problem with the theoretical study ofâ-C3N4 is

that optimization of the cell volume alone gives no information
as to whether the hypothetical structure will be stable with
respect to CxNy + zN2 (where (y + z/2)/x ) 4/3). This is a
consideration which we mentioned above. In the present case,
however, there is quite a bit of structural information readily
available which tells us that this structure is energetically
unacceptable and should have been discarded early on. The
nonbonded N-N contacts which are fine for the known silicon
compound are much too short for the carbon analog using typical
C-N bond distances and angles. The nonbonded repulsions
which result between the nitrogen atoms will be strongly
destabilizing. Theoretical estimates for the (large) energetic
penalty in â-C3N4 from this source have been made, and a
structurally related C4N3 alternative where such repulsions are
avoided has been proposed.38 Thus, getting behind the numbers
from the calculation is an essential part of such theoretical
studies. (Newer experimental work39 shows that the nitrogen
composition of C-N films saturates at less than 50% and that
the predictedâ-C3N4 remains at present experimentally inac-
cessible.)

5. Metal-Insulator Transitions

One of the most challenging areas in solid-state electronic
structure theory is the identification of the factors which
determine whether a material is a metal or an insulator. The
field has been of interest for many years40,41 but has received
much more attention after the discovery of high-temperature
superconductivity. One can delineate two broad categories of

metal-insulator transition which arise through two different
electronic mechanisms. Mott-Hubbard insulators are systems
where electrons are localized when the on-site electron-electron
repulsionU is significantly larger than the bandwidthW. In
other words, if there is an energy penalty for placing two
electrons on the same atomic center, then electrons will not flow
through the solid. Thus, the band gap arises through electron
correlation. The second type of transition is one where the
density of states is set by the geometry, so the gap between full
and empty bands may be opened or closed by changing the
structure. 3 shows the two mechanisms schematically using

hydrogen as an example.3 At large H-H distances (right) where
U/W is large, the system is a Mott-Hubbard insulator. An
insulator is also found when the H atoms form dimers at the
far left. In the middle where the H‚‚‚H distances are equal but
not large, the system is metallic. Many of the geometrical
distortions of the second type include those described as Peierls
or CDW distortions. The hydrogen example is representative
of many geometrically and electronically more complex systems.
Many metal-insulator transitions are triggered by changes in
temperature. For example, VO2 is a metal above 340 K where
it adopts the undistorted rutile structure. Below this temperature
the material is an insulator42with the MoO2 structure, one where
the metal atoms, which lie in chains, are paired up in a Peierls
fashion. Often such metal-insulator transitions may be induced
by application of pressure. Thus, hydrogen becomes metallic
as noted in section 4.
Of course, it is possible that some metal-insulator transitions

will be determined by effects of both types described above.
Mott-Hubbard transitions are often associated with geometry
changes, too. There is also the question of localization effects
via disorder (Anderson localization43). Since many metal-
insulator transitions are triggered by doping, e.g.,44 La2-xSrxMnO3,
all three mechanisms may play significant roles.
By and large it is a relatively simple matter to determine

whether a given material is a metal or insulator controlled by
effects of the second type. Calculations of the tight-binding
type work well in showing the existence of gaps between filled
and empty bands. The computed band gaps are usually too
large using this method, but that is not usually a problem since
this result is well-known and studies using the tight-binding
approach are more often focused on qualitative pictures of the
structure rather than on such numerical details. Band gaps using
the LMTO method contrariwise are normally too small.
The real challenge in the area at present is the reliable

computation of the energy of a metal relative to the Mott-
Hubbard insulating state. This involves the introduction of
electron correlation into the electronic structure problem.3,40,41

In recent years density functional theory has made some
dramatic contributions to the picture. With the aid of new
density functionals which employ generalized gradient correc-
tions,45 energetic separation of metal and insulator is becoming
increasingly accurate6 using, for example, spin-polarized FLAPW
calculation using the Perdew-Wang functional.46 One can quite
reliably predict that in the near future computational and
theoretical advances will make this much more routine. Natu-
rally, understanding how the gap originates is a much tougher
assignment. It is associated with the proper inclusion of

Figure 6. Structure of C3N4 (courtesy of T. Hughbanks).

3
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correlation in the calculation, as noted earlier. In molecules
the Møller-Plesset method47 is frequently used, and the
theoretical basis behind its structure enables ready evaluation
of the quality of a particular calculation. With density functional
theory it is not possible yet to decide whether one functional is
better than another ahead of time. Another area, difficult from
the viewpoint of electronic structure calculations, is the inclusion
of disorder. Perhaps as larger systems become more readily
approachable in computational terms, the results of large
supercell calculations will lead to insights concerning this aspect
of the metal-insulator question.

6. The Method of Moments

The geometrical structures of solids and the electronic factors
which stabilize one polymorph over another are of great
importance in solids, since the details of the structure often
strongly influence the properties of the material. There are
indeed many published band structure descriptions of solids,
but an important question is whether there are any general
statements which can be made that use a broader picture than
the one where the structure and properties of each system are
treated individually. The method of moments with its direct
connection to the topology, or atomic connectivity of the solid,
is a useful approach.3,4,48,49 Recall that thenth moment of a
collection of energy levels in terms of the electronic density of
states,F(E), is just 2∫-∞

∞ F(E)En dE. It may be shown that
within the Hückel model thenth moment may be written as a
weighted sum over all the self-returning walks of the orbital
problem as

This result is shown pictorially in4. Note the direct
connection between the moments and the geometrical structure.

The first moment is just the sum of the “walks in place” and
is thus a weighted sum of the diagonal terms of the Hamiltonian
matrix,Hii (R in Hückel language). It sets a “zero” of the energy
scale. The second moment is an important parameter. It is
the sum of the squares of the interaction integrals coupling one
orbital (i) to its neighbors (j) as shown schematically in5. Thus,
µ2(i) ) ∑jHijHji ) ∑Hij

2 andµ2 ) ∑iµ2(i), whereµ2 is the second
moment for the complete set of orbitals. Thus, the second
moment is a good measure of the coordination strength around
an atom.

Higher moments describe how a given atom feels the presence
of its neighbors further away. They give information about the
electronegativity difference (difference inR values) between
the atoms at each end of the bond and the presence of rings or
loops in the structure (6, 7). The fourth moment is another
interesting parameter since it is the first in the CAB molecule

which allows atom B to “see” atom C via their chemical bonds
to atom A.50 Its magnitude depends on the CAB bond angle
(Hij depends on the angle) and so contains information about
the shape of the system. Because the influence of an atom on
its neighbors decreases as the distance between them increases,
the importance of the higher moments drops off quickly as their
order increases.
The second moment plays an important role in electronic-

structural considerations. Although tight-binding calculations
are notoriously inaccurate when it comes to comparing the
stability of structures with different bond lengths or coordination
numbers, reliable2-4 energy differences (∆E) between two
structures may often be obtained by using the results of
calculations performed using the Hu¨ckel ansatz|H - E| ) 0
but setting the second moments of the energy density of states
constant. (There is a simple argument for such second moment
scaling from Lee4 and Pettifor,51 who call it the structural
difference theorem.) As will be seen below, it is often useful
to view ∆E as a function of electron count.
As described above, the second moment is determined by

the number of neighbors around each atom and the values of
the interorbital interaction integrals. Since these are determined
by the interatomic separation, the second moment scaling
scheme leads to insights into the way internuclear distances
change with coordination number.52 Although this may be
shown for a simple orbital problem, it may be extended to more
complex ones. For an atom withΓ neighbors and thusΓ
interactions (which are assumed to be equivalent), then within
the framework of Hu¨ckel theoryµ2 ) Γâ2 ) q, whereq is a
constant. Since the bond length (r) dependence ofâ may be
generally written asâ ) A/rm in the region of chemical interest,
the equilibrium interatomic separation is found to bere2m )
Γ(A2/q), namely an equilibrium bond length which increases
with coordination number. This result may be tested. If a
typical Si-O distance for four-coordinate silicon is 1.63 Å, then
the value for six-coordinate silicon is predicted to be 1.80 Å
(usingm) 2), a figure in excellent agreement with experiment.
A considerably more complex example which relies on

second moment conservation has led to the first viable explana-
tion of the stability of the Hume-Rothery phases. Hume-Rothery
realized53 that the structures adopted by noble metal alloys, such
as the brasses, are strongly determined by electron count. For
many years they were called “electron compounds”. The
experimental data were for years interpreted using a model based
on the nearly-free-electron model where the identity of the
lowest energy structure changes when the Fermi surface moves
through a Brillouin zone face.54 Since the electronic structure
of the transition metals and their crystal structures are well
described55 in terms of d-orbital interactions between adjacent
atoms, it is not surprising that a similar orbital approach is
successful for the five Hume-Rothery phases (hcp, bcc, fcc,
â-Mn, andγ-brass), too. Figure 7 shows a comparison between

µn ) ∑
walks of lengthn

HijHjk...Hni

4

5

7

6
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identity of the lowest energy structure56 from theory (using
second moment conservation) and that found from experiment.
Two of these structures,â-Mn andγ-brass, are very complex
ones indeed. It is quite astonishing that the model correctly
accommodates all of the different interatomic separations in a
way that energetically resolves these structures as a function of
electron count. In terms of the electronic densities of states of
the solids involved,3a it is interesting to note that the more stable
structure in each case is one that avoids high densities of states
at the Fermi level and thus provides a connection with the
traditional model.
The same approach57 leads to good agreement between the

experimentally and theoretically determined structures of binary
alloys of the transition elements as a function of electron count.
These structures include the very complex arrangements of the
ø andσ phases. The agreement between theory and experiment
is very good. It is difficult, however, to identify the structural
features which stabilize one structure over another (see below).
Note, however, that the stability of these two sets of compounds
is simply determined by an (admittedly more complex) version
of Hückel’s rule, another “topological” theory.
Higher moments are important, too, and there is a general

way to view the energy difference between two structures,
∆E(x), as a function ofx, the band filling48,49 (empty 0e x e
1; full) using them. Figure 8 shows results for the very simplest
system. It shows energy differences as a function of electron
count between rings of organicπ systems of different sizes.4

The results are in accord with Hu¨ckel’s rule, but we can go
further. Imagine two systems which have the same electronic
densities of states. Then∆E(x) ) 0. If the two densities of
states differ first at themth moment, then clearly it will be the
properties of thismth moment (through the walks of4) which
may be of major importance. There are two important features
which will be useful in a global way.

(a) The amplitude of the three curves of Figure 8 decrease in
the order (12/p) ) three rings> four rings. This trend is readily
understandable in terms of the discussion above which identified
structural walks as a measure of moments. When comparing a
12/p-membered ring with the six-membered ring, it is the first
self-returning walk (moment) which will be different between
the two which will dominate the form of∆E(x). This will be
the walk around the 12/p-membered ring of length 12/p (7).
Therefore, in this new language the electronic situation for 12/p
) 3,4 are third and fourth moment problems, respectively. This
is the order of the first moment that is different between the
two calculations.
(b) The number of nodes in these curves (including those at

x ) 0, 1) is equal to the order of the first disparate moment
between the electronic densities of states of the two structures.50

A set of∆E(x)plots are shown in Figure 9. The structure which
is more stable at the earliest orbital occupancy is50 the one with
the largest moment.
These two results lead to a direct correlation between the

shape and amplitude of the energy difference curve,∆E(x),
between two structures and the geometries of the two structures.
It is the way the atoms are connected together which determines
the orbital walks which are possible and thus the orbital walks
which are different between the two systems. There are some
interesting generalities. Three-membered rings are most stable
at early electron counts. The energy difference curves have a
large amplitude for three-rings. Indeed, such structural features
are commonplace in “electron-deficient” systems. Four-
membered rings are associated with two regions of stability, at
x ) 0.25 and 0.75. Six-membered rings have three regions of
stability, atx ) 0.167, 0.5, and 0.833. In general terms at low
electron counts (and especially at one-third filling), the three-
rings are stable; at the half-filled point, six-membered rings are
stable, and at higher electron counts (especially around three-
quarters filling) four-rings are stable. The energy difference
curves between the heavy elements on the right-hand side of
the periodic table, Tl-Po, show these features.50 Figure 10
shows calculated energy differences as a function of electron
count (x for the p band) between the structures (simple cubic,
hcp, ccp, andR-arsenic). Agreement with experiment is perfect.
The early structures (lead and thallium) are dominated by three-
rings (and thus close-packed structures), that at the half-filled
point (bismuth) by the six-ring structure, and the squares which
come in at laterx for the simple cubic structure found for
R-polonium. The simple form of the shapes of the curves
determines which structure is stable at which electron count.
We are entering a stage where the execution of quite good

theoretical calculations on solids is possible in a routine fashion.
The discussion of this section underlines the importance of
looking beyond the numbers and to the construction of

Figure 7. Theoretically calculated and experimentally observed
electron count ranges for stability of the Hume-Rothery phases. Adapted
from ref 56.

Figure 8. Energy difference between a two six-rings andp 12/p rings
as a function of electron count. The fractional orbital occupancy is
defined as (empty) 0e x e 1 (full). Adapted from ref 4.

Figure 9. General ∆E(x) curves which represent the energetic
difference between two systems whose densities of states differ at the
nth moment indicated by ann-gon. The parameterx is the fractional
orbital occupancy or band filling and is defined; empty, 0< x < 1,
full. Adapted from ref 3. The dashed nature of one of the curves has
no significance and is portrayed this way for clarity.
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conceptually accessible electronic models. It is usually not easy.
Recall Robert Mulliken’s comment “the more accurate the
calculations become, the more the concepts tend to vanish into
thin air.”58 A useful model with much promise is described in
the next section.

7. The Electron Localization Function

Almost since the time when chemists started to think about
the topological connections between atoms which lead to
molecules, they have also devised ways to view the chemical
bond. Although we know that bonds exist (molecules do hold
together), it has been very difficult to clearly correlate the bond
with a measurable property of the molecule. Difference electron
density maps, perhaps the obvious route, are not in general very
helpful. The subtraction of atomic densities from the total
electron density in a molecule does not take into account the
rehybridization at each atom as it “prepares itself” for bonding.
In some cases there is no difference density in a region where
we know that there is a bond. We know too that the localization
of electrons from delocalized molecular orbital pictures as often
performed in molecules such as methane is perfectly arbitrary.
For all collective properties of the molecule it does not matter
which approach we use, a localized or delocalized one. This
problem may have been solved by Becke and Edgecombe,59

who introduced the idea of the electron localization function in
1990. It builds on an earlier idea of Lennard-Jones.60 He used
the two-particle density associated with electrons of parallel spin
to study the spatial preferences of electrons. The two-particle
density gives the joint probability function of finding one
electron at (x,y,z) and another of the same spin at (x′,y′z′). He
found that electrons of parallel spin occupy separate regions of
space, and thus one can imagine regions of paired electrons.
The location of these localized electron pairs is not arbitrary,
in contrast to the traditional ones derived from a molecular
orbital picture.
Becke and Edgecombe59 showed how the probability of

finding two electrons with the same spin close together is very
much dependent on location. They demonstrated how regions
where the pair probability is high are regions where the electrons
are poorly localized, but where the probability is low the
electrons are well localized. ELF, the electron localization
function, is actually numerically defined for a system with
electron densityF(x,y,z) and set of occupied molecular orbitals
{φi} as

where

D is the leading term in the expansion of the two-particle density
in the interelectronic coordinater12, and the subscript h refers
to the corresponding value for the homogeneous electron gas,
the reference state. ELF as defined runs from 0 to 1 and is
equal to 0.5 for the homogeneous electron gas.
One can see a kinetic energy term (|∇φi|2) in this expression

and can imagine that, if the kinetic energy is high, two electrons
of the same spin will pass each other very quickly and thus
that the wave function is highly localized. Conversely, a low
local kinetic energy will indicate that the electrons are not highly
localized. It turns out13 that the results obtained by study of
ELF pictures are usually independent of whether the wave
functions and electron density have been generated using
calculations which include electron-electron interactions (such
as ab initio, LMTO, LAPW) or those which do not (Hu¨ckel
and tight-binding calculations). This is in accord with the
general ideas of chemical bonding. One-electron models have
a long history in providing deep insights into fundamental
aspects of structure and bonding. The essence of the picture
may often be gained simply from orbital overlap and electrone-
gativity considerations. The formal inclusion of electron-
electron interactions usually only changes the bonding picture
by a little. Figure 11 shows61 some ELF maps for the elements
C andâ-Sn in the crystalline state. Just as in geographical maps
the color code runs from blue (the oceans, low elevation, low
ELF) through green, yellow, and brown to white (the mountains,
high elevation, high ELF). In Figure 11a notice the regions of
high localization (white) in the (110) plane, the C-C bonds in
diamond. On moving down the periodic table there is a gradual
decrease (not shown) in the extent of the white region and its
replacement by brown regions showing regions of evenly
distributed localization typical of the homogeneous electron gas.
In Figure 11b for the metallic form of tin (â-Sn) there are no
white regions and the localization (brown-yellow) only mod-
erately high. These new results mesh with earlier views of this
trend. On moving down the periodic table the valence s and p
orbitals occupy increasingly disparate regions of space and the
localized orbitals less localized. (See the discussion in ref 62.)
These ideas will certainly be of great importance in the future,

and as we noted earlier a real challenge will be to develop new
bonding models encompassing a wide range of solids, presently
described from different viewpoints.

8. Superconductivity

The electronic structure and striking properties of the high-
temperature superconductors have absorbed the attention of
solid-state scientists for almost a decade since their discovery
by Bednorz and Mu¨ller.63 Even now we have very little
understanding of what really sets these systems apart from other
superconductors in terms of their electronic structure. (One
interesting result of all of the attention, however, has been the
exploration of copper oxide chemistry in a detail that is
unprecedented in any other part of the periodic table.) The
highest critical superconducting transition temperatures (Tc) are
an order of magnitude larger than those previously known in
conventional superconductors.64 The highestTc’s found so far
are around 125 K in the complex materials Tl2Ba2Ca2Cu3O10,
TlBa2Ca3Cu4O11, and (Tl,Pb)Sr2Ca2Cu3O9 and 153 K under
pressure for HgBa2Ca2Cu3O8+δ.

Figure 10. Computed energy difference curve as a function of band
filling for the simple cubic,R-arsenic, hcp, and fcc structures. A
p-orbital-only model was used. Notice the successful mimicking of the
observed structures: Tl and Pb as close-packed structures with three-
membered rings, Bi with theR-arsenic structure, and polonium with
the simple cubic structure.

ELF) 1/[1+ (D(x,y,z)/Dh(x,y,z))
2]

D(x,y,z)/Dh ) 0.3483F-5/3[∑
i

|∇φi|2 - 1/8|∇F|2/F]
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A feature common to all of the superconducting cuprates65

are sheets of stoichiometry CuO2 (8) containing square-planar

copper atoms. These sheets may be flat, puckered, or rumpled
and frequently show one or two much longer Cu-O distances
perpendicular to them. The copper oxidation state is always
close to 2, and such local structures are those expected from
Jahn-Teller considerations. These sheets, where superconduc-
tion takes place, alternate with sheets or slabs of, usually
insulating but sometimes conducting, material. This is described
as “reservoir” material as we will see below. It lies in a region
spatially separated from the CuO2 sheets (9). For example, in
the “2-1-4 compound”, La2-xSrxCuO4, written as (La2-x-
SrxO2)(CuO2) to emphasize its structure, the reservoir is a
La2-xSrxO2 slab with the rock salt structure. In the “1-2-3
compound”, YBa2Cu3O7, (Y)(Ba2CuO3)(CuO2)2, there are two

types of reservoir material (Figure 12): layers of Y atoms
and the CuO3 chains of square-planar Cu(2) linked by Ba
atoms.
One feature common to all of these high-temperature

superconductors is that65 the copper oxidation state for the
highestTc is close to 2.15. Thus, for example, the maximum
Tc in La2-xSrxCuO4 is for x≈ 0.15. Figure 13 shows a general
picture which appears to be universal, although crystal chemistry
often prohibits access to some doping regions in many systems.
On initial doping of an antiferromagnetic insulator, the Ne´el
temperature rapidly falls, and an ill-defined spin glass region
appears to develop. At slightly higher doping levels a super-

Figure 11. Computed ELF maps for (a, left) diamond in the (110) plane, a slice which shows the nearest-neighbor bonds, and (b, right) the
metallic (â) form of tin. Reproduced by permission from ref 13b. Copyright 1994 Verlag Chemie.

8

Figure 12. Structure of the 1-2-3 compound, YBa2Cu3O7.
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conductor is produced with a maximum inTc at this critical
doping level. On further dopingTc drops, and a “normal” metal
is produced. A second feature is that there appears to be a
thermodynamic stabilization associated with this magic com-
position. Thus, on cooling La2CuO4+x below room temperature
a phase separation66 occurs into La2CuO4+x f La2CuO4 + La2-
CuO4.07. The second species has the magic electron count and
is indeed a superconductor with aTc similar to that in La1.85-
Srx.15CuO4. In an extremely interesting study67 of the series of
oxides Pb2Sr2RECu3O8 (RE ) rare earth), it was found that
those examples with the larger REs (e.g., La) are semiconduc-
tors, but those with the smaller REs are superconductors with
Tc’s as high as 70 K. X-ray diffraction studies showed that the
superconducting samples with, for example, RE) Ho contain
around 9% vacancies on the RE site, whereas this site is fully
occupied in the insulating examples. This figure of 9% RE
vacancies for the superconductors leads to a value of 2.14 for
the in-sheet copper oxidation state. There must be some feature
of the chemistry which, during the synthetic step, drives the
system to composition appropriate for the magic electron count.
Although there has been some progress,68 one of the chal-

lenges for the future in this area is to identify the electronic
features behind these observations, namely the origin of the
thermodynamic driving force for the magic composition and
its connection with a rather special type of superconductivity.
Correlation with superconductivity will need to await suitable
progress in solid-state physics.69

In three of the examples we have noted above, the magic
copper oxidation state is achieved by varying the stoichiometry
of the reservoir region, (La2-xSrxO2) in La2-xSrxCuO4, (La2O2+x)
in La2CuO4.07, and (Pb2Sr2RECuO4) in Pb2Sr2RECu3O8. A
rather different and very interesting state of affairs (self-doping)
is found in the 1-2-3 compound70 YBa2Cu3O7, with a Tc of
∼95 K. This material (Figure 12) contains two types of copper
atom: square-pyramidal Cu(1) and square-planar Cu(2). The
fifth Cu(1)-O distance is quite long, so that a good description
of the structure is of chains of copper (Cu(2)) in square-planar
coordination sandwiched between planes of copper (Cu(1)).
(Oxygen is readily lost from the chains, and copper atoms in
linear two coordination are generated. In YBa2Cu3O6 all of the
interplanar copper atoms are two coordinate.) Since square-
planar coordination is a feature of the structural chemistry of
both Cu(II) and Cu(III) but the square-pyramidal arrangement,
with a long apical bonds, only for Cu(II), YBa2(CuIIO2)2(CuIIIO3)
should be a chemically satisfying way to describe YBa2Cu3O7.
In a similar way, YBa2(CuIIO2)2(CuIO2) should describe YBa2-
Cu3O6, since linear two-coordination is a common coordination
geometry for Cu(I). Such simple descriptions clearly tell us
little about the real state of affairs in the superconductor, and
we need to examine the form of the band structure of the
material.
This is shown in Figure 14 in schematic form and im-

mediately shows a more complex picture. Thex2 - y2 band

derived from the square planes is ofδ symmetry with respect
to the interplanar material and is thus essentially electronically
decoupled from the energy bands of the chains. For the square-
planar copper atoms of the chains an analogousx2 - y2 band
may be constructed, labeledz2 - y2 since these chains run in
theyzplane. The actual electronic description of this compound
critically depends on the relative locations of these two bands
as may be seen from Figure 14. These two bands actually
overlap in such a way that electron transfer occurs71,72 from
plane to chain (Figure 14b). As a result, the interplanar CuO3

unit plays the same role as substitution of Sr for La in the La2-
CuO4 system, the overall result being removal of electron density
from the CuO2 planes. The geometrical details of the copper
coordination are vital in controlling this charge transfer since
the Cu-O distances in particular set the widths and centers of
the bands. Such band overlap is found in other superconduc-
tors73 such as Tl2Ba2Can-1CunO2n+4.
As we have noted above, a clear challenge for the future is

the elucidation of the nature of the electronic state in these solids.
All of the presently known high-Tc superconductors may be
described using the schematic of Figure 13, which shows how
the superconductor evolves from the antiferromagnetic insulating
state through an ill-defined spin-glass state on doping. Eventu-
ally a normal metal is generated at high doping levels. We
noted earlier that metal-insulator transitions may be controlled
by correlation (Mott-Hubbard transitions), changes in geometry
dictated by Fermi surface nesting, and localization effects via
disorder. In the superconductors where a wide doping range
has been available for study (e.g., for La2-xSrxCuO4 itself), the
geometry generally changes rather smoothly withx even though
the space group may change. The elucidation of the nature of
the metal-insulator or superconductor-insulator transition in
this system is a particularly demanding challenge and is
associated with the construction of a mechanism for supercon-
ductivity. From electronic structure calculations it is clear,
however, that the copper “x2 - y2” band of the CuO2 sheet is
in fact heavily mixed with oxygen character and that this mixing
is quite sensitive to the copper oxidation state. By analogy with
results from lower temperature superconductors, there have been
some interesting correlations from calculation74 between the
optimal doping level and the coincidence of the Fermi level
with a van Hove singularity.
The important electronic features behind the superconducting

properties of the alkali-metal-doped C60 solids75,76 of stoichi-
ometry A3C60 are readily accessible. The highestTc is currently
40 K. Many of these A3C60 solids are described by a cubic
close-packed array of C60 fullerene molecules with the A atoms
in all the octahedral and tetrahedral holes. Others are based on
a bcc arrangement. Recalling the stability of C5H5

-, high
electron affinities for the attachment of electrons to C60 might
be expected from the presence of the five-membered rings in
this spherical polyene, and indeed, from the Hu¨ckel level
structure of the system76 (10), six electrons may be accom-

Figure 13. Schematic of the behavior of the La2-xSrxCuO4 compound
with x. The nature of the material between insulator and superconductor
is not clear.

Figure 14. The planex2 - y2 band and chainz2 - y2 bands of YBa2-
Cu3O7. (a) An arrangement where no plane-chain electron transfer
occurs. (b) Overlap of the two bands so that the chain copper atoms
are reduced and the plane copper atoms oxidized.

13272 J. Phys. Chem., Vol. 100, No. 31, 1996 Burdett



modated to give an semiconductor by filling the t1u band. (The
degeneracies of the levels are shown on the right-hand side of
the diagram. With three electrons, however, the half-filled band
for A3C60 leads to a metal and superconductor.

The dependence75 of Tc upon cell parameter in a variety of
doped fullerenes is shown in Figure 15. This behavior has a
simple explanation based on the structural dependence of the
band structure using the BCS formulation of superconductivity.
This formally envisages the generation of a Cooper pair via an
attractive potential,V, which exists within the range of phonon
energiesED around the Fermi energy, namelyEF ( ED. Within
the phonon schemeED is just kθD where Tc is the Debye
temperature.Tc is given by 1.134θD exp(-1/VF(EF)), where
θD is the Debye frequency,VF(EF) is a dimensionless term, the
electron-phonon coupling constant.F(EF) is the density of
states at the Fermi level. As the size of the dopant increases,
the fullerene units are pushed further apart with a concomitant
decrease in the overlap integral between adjacent molecules.
This overlap integral determines the bandwidth; the larger the
overlap integral, the larger the bandwidth (11) and thus the

smaller the density of states at the half-filled point (since the
total integrated density of states is constant). Assuming thatθ
andV of the BCS equation are invariant to the nature of metal
atom substitution, thenTc varies simply withF(EF) as shown

by calculation in Figure 16. HigherTc’s are found for larger
intermolecular C-C distances where the overlap is smaller. At
some limiting separation, however, the bandwidth will have
decreased to the point where the delocalized model becomes
inappropriate and the electrons localize. The effect destroys
not only superconductivity but normal metallic behavior, too.
This has probably occurred for (NH3)6Na3C60

77 where the Na-
(NH3)2 unit, larger than a naked Na+ ion, leads to a large
interunit C-C separation. Again, a challenge for calculation
is to be able to reproduce (and predict in for other cases) the
occurrence of these transitions by balancing the one-electron
and many-body terms in the energy.

9. Epilogue

In this article we have reported on some diverse types of solid-
state problems using an equally wide range of theoretical
methods. What is interesting is how theoretical methods, often
quite sophisticated, are becoming increasingly used by the
experimental chemist as a tool along with physical instrumental
methods. Thus, the group of users of theory is larger that the
group of “theorists”, a welcome state of affairs. The use of
theory in any area of science requires a knowledge, not only of
its implementation but also of its limitations of course. It also
demands, to be effective, the ability to step back from the
numbers generated by the computer and construct a theoretical
model which will be useful, not only for the system at hand
but also for a much broader spectrum of materials. Although
some of the theoretical problems facing us are described in the
text above, the generation of global pictures of the electronic
structure of solids remains our greatest challenge. At present,
given the stoichiometry of a AxByCz solid, we cannot in general
predict its structure, let alone its properties. This venture
transcends advances which will be made in the future in terms
of computational power and improvements in the numerical
accuracy of our theoretical methods. This is where the real
excitement will lie.
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