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We consider the extrapolation of the one-electron basis to the basis set limit in the context of
coupled cluster calculations. We produce extrapolation coefficients that produce much more
accurate results than previous extrapolation forms. These are determined by fitting to accurate
benchmark results. For coupled cluster singles doubles energies, we take our benchmark results
from the work of Klopper that explicitly includes the interelectronic distance. For the perturbative
triples energies, our benchmark results are obtained from large even-tempered basis set calculations.
© 2005 American Institute of Physics.@DOI: 10.1063/1.1824880#

I. INTRODUCTION

In the customary method for solving the electronic
Schrödinger equation, one makes a double basis set expan-
sion. The first basis set is the so-called one-electron basis,
and these are usually chosen as atomic centered Gaussian
radial functions times spherical harmonics. The second basis
consists of Slater determinants of different occupations of
molecular orbitals built from the one-electron basis func-
tions, or linear combinations of Slater determinants having a
particular spin and symmetry eigenvalue~configuration state
functions, or CSFs!. This second basis accounts for electron
correlation. The topic of the present work is accelerating the
convergence of the one-electron basis to the complete basis
set limit, while electron correlation will be treated using the
coupled cluster method including single and double excita-
tion amplitudes~CCSD!.1

A big advance in the field was the introduction of one-
electron basis sets derived from atomic natural orbitals
~ANO! by Amlöf and Taylor.2 These basis sets introduced a
scheme whereby the completeness of the radial and angular
parts were equally balanced in correlated calculations, and
furthermore could be systematically improved. These ideas
were developed further by Dunning,3 who developed fami-
lies of compact basis sets with the same philosophy. The
Dunning basis sets have become the defacto standard in elec-
tronic structure calculations. The most common family of
Dunning basis sets are denoted cc-pVXZ ~correlation consis-
tent polarized valenceX’tuple zeta! with X5D, T, Q, 5, 6.

More recently there has been much interest in exploiting
the systematic behavior of these basis sets with respect to
increasingX by carrying out calculations for several values
of X and extrapolating to the basis set limit. This requires
knowledge about how the energies scale withX, and there
has been considerable debate in the literature on what form is
most appropriate. Analytic work by Schwartz4 on He and by
Kutzelnigg and Morgan5 on multielectron atoms using the
MP2 ~second order Møller–Plesset perturbation theory!
method assumes that the one-electron basis is complete for a
given l, and yields the asymptotic dependence of the corre-
lation energy on the maximum value ofl, which we calll max.

Since for the first row elementsX5 l max, it is natural to use
X in the asymptotic formulas, yielding

Ec~X!5Ec~`!1CcX2n, ~1!

where c denotes the particular contribution to the energy,
with n53 for singlet He or singlet pairs andn55 for triplet
pairs. This form arises from consideration of the limiting
behavior of the wave function as two electrons coalesce.

It should be carefully noted thatc is one of HF ~the
Hartree-Fock energy!, SP ~the singlet pair! contribution to
the CCSD correlation energy, TP~the triplet pair! contribu-
tion to the CCSD correlation energy, or~T! ~the perturbative
triples corrections!. Equation~1! has been used forc5SP,
c5TP, andc5SP1TP.

Motivated by the fact thatl max5X21 for hydrogen,
Martin6 suggested one use,

Ec~X!5Ec~`!1Cc/~X1a!3, ~2!

for the total correlation energy, i.e.,c5SP1TP1(T).
Peterson7 has suggested one use,

Ec~X!5Ec~`!1(
n

Cn
c exp@2~X21!n#, ~3!

for the total energy, i.e.,c5HF1SP1TP1(T). The formula
is motivated by observations that for small basis sets, Eq.~1!
yields too large a correction. Initial work8 also utilized the
expression

Ec~X!5Ec~`!1Ac exp~2bX!, ~4!

for the total energy, i.e.,c5HF1SP1TP1(T), although it
is now recognized that this is more appropriate for the HF
energy.9

The work of Klopper10 provides an excellent review of
previous work as well as benchmark results obtained using
the CCSD method with explicit inclusion of the interelec-
tronic distance~CCSD-R12 method!. He carried out large
basis set CCSD-R12 calculations and conventional CCSD
calculations using the cc-pVXZ basis sets for a test set of the
seven species Ne, N2 , 1A1 CH2, H2O, CO, HF, and F2 , all
at their minimum energy geometry determined using the cc-
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pCVQZ basis and the CCSD~T! method correlating all elec-
trons. The geometrical parameters for the minima are given
in Table I. The CCSD-R12 results are expected to be con-
verged with respect to the one-electron basis, providing ac-
curate results for the seven molecules. Thus this work pro-
vides unambiguous results for judging the quality of basis set
extrapolation.

Klopper also shows the superiority of decomposing the
correlation energy into the singlet pair contribution and trip-
let pair contribution, and then extrapolating the singlet pair
contribution using the scalingX23 and extrapolating the trip-
let pair contribution using the scalingX25. He also reports
benchmark results of calculations of core-valence energies
using the CCSD-R12 method as well as conventional CCSD
calculations using cc-pCVXZ basis sets,11 but he does not
consider extrapolation of the later results. He also reports~T!
energies, but one must bear in mind that these do not explic-
itly include the interelectronic distance, and thus do not pro-
vide accurate benchmark results.

The work of Klopper10 leaves several unanswered ques-
tions. It is well known that molecules such as HF have a
great degree of ionic character, and hence require extra dif-
fuse basis functions; thus the aug-cc-pVXZ basis sets12 are
more appropriate. This is also the case when one is looking
at weakly bound systems. One can ask whether or not the
extrapolation obviates the need for aug-cc-pVXZ basis sets
for energies, or the need for counterpoise corrections to the
basis set superposition error. Another issue not addressed by
Klopper is the convergence of the perturbative triples ener-
gies in CCSD~T! calculations. One can also ask whether or
not the extrapolation can be further improved, for example,
to obtain higher accuracy given a pair of basis sets by look-
ing at departures from Eq.~1! due to the substitutionX
5 l max, or to obtain even higher accuracy when using more
than two basis sets by including more terms in the extrapo-
lation formulas. These are questions we will answer in the
present work.

II. HOW EXTRAPOLATION SHOULD WORK

The analytic work4,5 assumes that the one-electron basis
is converged for each value ofl. In this section we test how
extrapolation works when basis sets of this type are used.

Basis sets for the atoms H, C, N, O, F, and Ne that are
converged for eachl are not available in the literature, so it
was necessary to generate our own. We represented the basis
functions for eachl as even-tempered13 expansions; thus we
need to optimize two parameters for eachl and each choice
of number of basis functions. We performed this optimiza-

tion by means of Powell’s method14 implemented in
Molpro15 by means of Molpro’s job control language. For Ne
we used the CCSD method, while for the other atoms we
used the CISD ~configuration interaction singles and
doubles! method using orbitals obtained from state averaged
MCSCF ~multiconfiguration self-consistent field! calcula-
tions designed to yield spherical atoms. For H, we optimized
basis functions for the H2 molecule atr 51.4a0 . In all cases
we only considered the ground electronic state and only cor-
related the valence electrons.

When optimizings functions, we used thep andd ~only
p for H2) functions from the cc-pV6Z basis set, and in-
creased the number of functions in steps of 2 until the opti-
mized energies differed by less than about 5mEh . This larg-
est s set was used in all further optimizations. We then
optimized thep, d,... shells using the same procedure. For
H2 , we optimized up toh functions. For the first row atoms,
we observed that the spacing between functions and the cen-
ter of the functions tended to approach limits asl was in-
creased, while at the same time the number of required func-
tions decreased in a regular manner. We thus only optimized
up tog functions and used the spacing and center from theg
functions for theh and i functions, while decreasing the
number of functions in a regular manner. For Ne, N, C, and
O, to be conservative, we used moreh and i functions than
the optimization trend indicated, while for F we did not use
any extra functions. This leads to the following basis sets for
H: 15s8p6d6 f 4g4h, for C: 23s15p10d8 f 6g6h4i , for N:
23s17p12d9 f 7g7h5i , for O: 23s15p12d10f 8g8h6i ,
for F: 23s17p14d12f 10g8h6i , and for Ne:
23s15p14d11f 9g9h7i . We call thesef-limit basis sets. We
give the parameters for the optimized basis sets in Table II.

We use these basis sets uncontracted in all calculations.
Possible economies could be realized by generating ANO’s,
but we have not done so in the present work. All calculations
we run using a modified version ofMOLPRO 2000.1on a SGI
Origin 3000 in single processor mode. The two-electron in-
tegrals were computed once and stored on disk. These basis
sets proved to be too large to run the largest basis for H2O
and F2 .

In Table III we give the SCF energies obtained from the
f-limit basis sets. We obtain exponential convergence with
respect to increasingl max, and our best results are in very
good agreement with the results of Klopper.

In Table IV we give the singlet and triplet pair contribu-
tions to the CCSD correlation energies, and in Table V we
give ~T! energies for the seven test species computed using
the f-limit basis sets.

In Fig. 1, we show the root-mean-square errors in the
total CCSD correlation energy over the seven test species for
the unextrapolated cc-pVXZ basis sets, thef-limit basis sets,
and the results from extrapolating those basis sets using Eq.
~1! with n53 for the singlet pair energies andn55 for the
triplet pair energies. Consider first the unextrapolated results.
As expected, thef-limit basis results have smaller errors, but
the two curves run pretty much parallel, with thef-limit basis
errors a little more than a factor of two smaller. That the
curves run parallel is a tribute to the skill of Dunning in
optimizing the basis sets. In contrast, once extrapolation is

TABLE I. Geometrical parameters for the molecules.

R (Å) / ~deg!

CH2(1A1) 1.106 758 102.027
H2O 0.957 119 104.225
HF 0.915 769
N2 1.098 119
CO 1.128 876
F2 1.411 336
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carried out, thef-limit basis results are much better than the
results obtained with the Dunning basis set, and asl max in-
creases, the amount of improvement increases. At the largest
basis for which we have results for all seven test species, the
extrapolatedf-limit basis results give a rms error that is a
factor of 14 times smaller than those obtained from the ex-
trapolated cc-pVXZ results. This clearly shows that the sub-
stitution X5 l max in Eq. ~1!, although reasonable, is not per-
fect.

We can also perform the extrapolation a little differently
to obtain our best results. This is obtained by a least squares
fit to the results of the three largest basis sets to Eq.~1! with
n53 for the singlet pair energies and~T! energies, andn
55 for the triplet pair energies. The fact that we are fitting
three energies with two parameters stabilizes the results. This
is important for the individual pair energies have two sources
of error. The first is that in spite of all our efforts, thef-limit
basis sets are not uniformly converged for eachl. This will
introduce errors of severalmEh . The second is we neglect
transformed integrals smaller than a cutoff to decrease the

disk storage in thef-limit calculations. We expect this to
cause errors of a fraction of amEh . In Table VI we give our
results. The agreement with Klopper’s results is very satis-
factory. An independent check is the rms error of the least
squares fit. The difference between our results and Klopper’s
results correlates well with this difference. The fits to the~T!
energies are always very good, and the fits to the triplet pairs
are very good, with the exception of F2 , where results up to
i basis functions are really required to obtain accurate results.

III. HOW EXTRAPOLATION CAN BE MADE TO WORK

We now wish to introduce more general formulas that
include theX2n dependence due to the Coulomb hole, but
also recognize that our basis sets are not complete. We would
also like to do this with minimal assumptions.

We will begin by assuming that we can write

Ec~X!5Ec~`!1(
n

Cn
c f n

c~X! ~5!

TABLE III. HF energies fromf-limit basis sets~in Eh). The Ne energy is2128.547 092Eh .

l max N2 CH2 H2O CO HF F2

2 2108.989 985 238.895 637 276.065 841 2112.787 750 2100.069 531 2198.770 211
3 2108.992 871 238.896 011 276.067 402 2112.790 621 2100.070 810 2198.773 339
4 2108.993 061 238.896 031 276.067 455 2112.790 794 2100.070 847 2198.773 478
5 2108.993 072 238.896 032 276.067 457 2112.790 804 2100.070 849 2198.773 492
6 2108.993 074 238.896 032 2112.790 805 2100.070 849

TABLE II. Basis function parameters forf-limit basis sets.z5abn, n51,...,Nf .

l H C N O F Ne

15a 23 23 23 23 23

s 2.102 465 58b 2.012 393 44 2.009 993 70 2.039 542 08 2.007 185 77 2.021 688 64
7.486 027 91c 165.073 510 76 212.782 754 62 179.540 982 11 376.475 468 86 415.996 424 14

8 15 17 15 17 15

p 1.797 386 89 1.875 144 35 1.804 640 23 2.000 000 00 1.805 564 62 1.983 261 19
1.304 477 02 3.143 095 77 6.945 407 86 3.275 534 35 7.752 815 83 14.537 657 71

6 10 12 12 14 14

d 1.858 867 59 1.760 194 83 1.720 236 66 1.664 833 00 1.548 992 99 1.559 241 01
1.633 852 49 1.435 986 98 3.075 896 41 2.803 992 39 3.738 243 56 4.850 572 08

6 8 9 10 12 11

f 1.872 460 35 1.732 435 75 1.696 211 04 1.656 390 86 1.548 992 99 1.583 140 72
2.555 765 17 1.531 308 11 2.442 677 58 2.964 889 85 3.983 487 05 4.335 992 13

4 6 7 8 10 9

g 1.927 388 56 1.723 504 91 1.710 936 35 1.649 757 72 1.548 992 99 1.583 000 00
2.628 495 06 1.520 327 00 2.452 559 58 3.107 983 02 4.251 004 98 4.682 841 62

h 4 6 7 8 8 9
1.927 388 56 1.723 504 91 1.710 936 35 1.649 757 72 1.548 992 99 1.583 000 00
2.628 495 06 1.520 327 00 2.452 559 58 3.107 983 02 4.251 004 98 4.682 841 62

4 5 6 6 7

i 1.723 504 91 1.710 936 35 1.649 757 72 1.548 992 99 1.583 000 00
1.520 327 00 2.452 559 58 3.107 983 02 4.251 004 98 4.682 841 62

aLine 1: number of basis functionNf .
bLine 2: spacing between exponential parametersb.
cLine 3: center basis functionab (N f11)/2 in atomic units.
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for some functionsf n
c . This form encompasses Eqs.~1! and

~3! but not Eqs.~2! and~4!, unless the nonlinear parameters
a andb are somehow fixed. Nonetheless this is a very flex-
ible form. The problem now is to determine the optimum
functions. This is not at all easy, but we note that we do not
really need to know the functions, but rather just how to
determineEc(`). Thus we will circumvent the difficult task
of finding the functions by noting that if the functionsf n are
linearly independent, then Eq.~5! implies

Ec~`!5(
X

Ec~X!FX
c ~6!

subject to the constraint

15(
X

FX
c , ~7!

which arises from the first term on the right-hand side of Eq.
~5!. The constantsFX

c are determined solely by thef n
c and not

the values ofEc(X), and so can be tabulated. Thus the task
of determining the functions is changed to the task of deter-
mining the constantsFX

c , a much simpler task.
It should be noted that Varandas16 has also considered

improved extrapolation formulas by including additional in-
verse powers in Eq.~1! with the additional coefficients being
determined as functionals of the leading coefficient. This
leads to violations of the constraint of Eq.~7!. We believe
that it is important to retain this constraint.

In order to proceed, we have to make an assumption
about the functionsf n

c . Two choices come to mind: The first
is to assume that they are universal, i.e., they neither depend
on molecular species nor on molecular geometry. The second
choice is they depend on the molecular species, but not on
the molecular geometry. In either case, if we have a database

of accurate estimates ofEc(`), we can invert Eq.~6! via a
least squares fit to determine theFX

c . This is the crux of our
method.

In this paper we will assume that the functions are uni-
versal, and will use Klopper’s CCSD-R12 results10 for the
seven species to determine theFX

c for the CCSD energies and
our ~T! results for the~T! extrapolation. It should be noted
that the extrapolation coefficients will depend on the family
of basis sets used, e.g., cc-pVXZ vs aug-cc-pVXZ. In Table
VII we give the coefficients we have determined. For com-
parison, we also give the coefficients obtained using the
power law of Eq.~1!.

The simplest case is when we consider the results of two
basis sets, in which case we have a single parameter to op-
timize in the expression

Ec~`!5@Ec~X2!2Ec~X1!#Fx2

c 1Ec~X1!. ~8!

In Fig. 2 we compare the various CCSD extrapolations.
We find the very interesting results that the best ‘‘conven-
tional’’ extrapolation is obtained using aug-cc-pVXZ basis
sets andX23 for singlet pairs andX25 for triplet pairs, while

FIG. 1. Root-mean-square errors from cc-pVXZ andf-limit basis sets. Solid
lines are unextrapolated, dashed lines are extrapolated using Eq.~1! with
lmax and lmax-1 for singlet and triplet pairs separately, diamonds are the
cc-pVXZ basis results, and circles are thef-limit basis results.

TABLE IV. Singlet and triplet pair energies~in mEh) from f-limit basis sets.

l max Ne N2 CH2 H2O CO HF F2

Singlet pair energies
2 2163.685 2246.279 2122.500 2175.523 2235.073 2173.529 2340.648
3 2191.213 2269.049 2139.370 2196.611 2258.935 2198.169 2386.283
4 2202.637 2276.440 2141.677 2203.019 2267.054 2207.112 2402.604
5 2206.532 2279.101 2142.412 2205.086 2269.911 2210.095 2408.260
6 2208.248 2280.238 2142.714 2271.149 2211.385

Triplet pair energies
2 295.347 2116.857 234.351 283.895 2114.082 292.445 2170.525
3 2102.937 2123.867 232.045 289.524 2121.083 299.159 2183.558
4 2104.333 2125.080 232.290 290.395 2122.308 2100.316 2185.973
5 2104.676 2125.369 232.341 290.587 2122.597 2100.588 2186.556
6 2104.791 2125.459 232.356 2122.688 2100.674

TABLE V. ~T! energies fromf-limit basis sets~in mEh).

l max Ne N2 CH2 H2O CO HF F2

2 24.918 218.449 24.726 28.127 216.986 27.059 218.903
3 26.008 220.480 25.432 29.407 218.822 28.323 221.697
4 26.296 220.966 25.578 29.686 219.270 28.627 222.423
5 26.401 221.132 25.619 29.772 219.425 28.729 222.673
6 26.442 221.199 25.635 219.487 28.768
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in contrast, all of the new two-point extrapolation parameters
give essentially identical results for either basis set, and fur-
thermore, these results are significantly more accurate than
the power law extrapolations. That aug-cc-pVXZ extrapola-
tions are more reliable was also observed by Valeevet al.17

When using the power law extrapolation, results roughly
equivalent toX5Q are obtained fromX5D andT. In con-
trast, when using the new formula,X5D andT yields results
roughly equivalent toX57. As the largestX used in the
extrapolation increases, the power law and new formulas
give more similar results, but the new formula always gives
significantly more accurate results. We only show one curve
for the new results as the curves obtained using the cc-pVXZ
and aug-cc-pVXZ basis sets are indistinguishable. This is not
the case for the power law extrapolations.

It is interesting to compare the present results to the
extrapolation of Truhlar.18 Truhlar optimized the exponent in
Eq. ~1! to give the best agreement with accurate results using
X5D and T. Since he intended that the exponent be used
only for X5D andT, functionally his method is equivalent
to optimizing the coefficient in Eq.~8!, but our approach has
some advantages: First of all, the process of determining the
optimum coefficient is much easier numerically. Second, we
have a simple, well defined, procedure for including more
terms in Eq.~6!. The final curve in Fig. 2 illustrates this by
showing the effect of extrapolating using three values ofX.
The rms error is reduced by about a factor of 2 for a given
largest value ofX compared to the two-point formulas.

In Fig. 3 we compare various methods of extrapolating
the ~T! energies for both the cc-pVXZ and aug-cc-pVXZ
basis sets. Here we find that extrapolating the~T! energies
with X23 leads to erratic results, while the fitted coefficients
give very nice results, and furthermore, the difference be-
tween the cc-pVXZ and aug-cc-pVXZ results is not that
great. The results obtained with the new coefficients are al-
ways at least an order of magnitude more accurate than not
extrapolating.

In Fig. 4 we show a comparison of extrapolating the
SCF energy via Eq.~4! or by Eq.~6!. We find the exponential
extrapolation to be very erratic—sometimes producing rms
errors greater than the inextrapolated results; however, in
contrast, the new extrapolation works very well, always con-
siderably decreasing the rms error.

IV. DISCUSSION

In this paper we have introduced extrapolation formulas
for CCSD~T! energies that are much more accurate than pre-
vious ones. We find that it is not necessary to decompose the
CCSD energy into singlet pair and triplet pair contributions
to obtain accurate results. This is significant for two reasons:
First of all, not all CCSD codes form this decomposition.
Second, it is not possible to carry out this decomposition for
open-shell CCSD calculations, because the wave function is
not a spin eigenfunction in practical implementations of
open-shell CCSD theory. We also find that equivalent results
are obtained with both the cc-pVXZ and aug-cc-pVXZ basis
sets.

TABLE VI. Best estimates of correlation energies~in mEh).

Ne N2 CH2 H2O CO HF F2

Singlet pair energies
pwa 2210.61 2281.85 2143.16 2272.88 2213.20
Klopperb 2210.61 2281.88 2143.16 2272.92 2213.14

Triplet pair energies
pw 2104.85 2125.51 232.37 290.67c 2122.74 2100.73 2186.78c

Klopperb 2104.87 2125.53 232.37 290.69 2122.75 2100.74 2186.87

~T! energies
pw 26.505 221.300 25.660 29.878c 219.580 28.830 222.945c

aPresent work.
bReference 10.
cUsing only up toh functions.

TABLE VII. Coefficients for extrapolation.

X1 andX2 Power cc-pVXZ aug-cc-pVXZ

SCF
2 and 3 1.332 527 6 1.347 630 2
3 and 4 1.307 126 9 1.294 053 1
4 and 5 1.144 266 6 1.109 913 7
5 and 6 1.204 123 2 1.119 855 0

Singlet pairs CCSD
2 and 3 1.421 053 1.707 912 0 1.694 220 2
3 and 4 1.729 730 1.767 411 9 1.759 252 4
4 and 5 2.049 180 1.987 349 7 2.005 973 6
5 and 6 2.373 626 2.316 158 3 2.333 172 0

Triplet pairs CCSD
2 and 3 1.1516 59 1.356 600 5 1.331 348 8
3 and 4 1.3111 40 1.464 094 4 1.454 067 5
4 and 5 1.4873 87 1.518 271 4 1.529 966 8
5 and 6 1.671 899 1.742 258 9 1.755 288 6

Total CCSD
2 and 3 1.595 712 1 1.587 761 6
3 and 4 1.699 881 4 1.700 111 5
4 and 5 1.900 400 2 1.930 317 4
5 and 6 2.237 550 1 2.265 620 6

~T!
2 and 3 1.503 285 2 1.398 597 3
3 and 4 1.695 134 7 1.730 158 4
4 and 5 1.741 321 2 1.810 472 6
5 and 6 2.101 801 0 2.247 961 7
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The extrapolation of all components of the energy is
linear; thus the extrapolations can also be easily used with
analytic derivatives of the energy.

An important question is how extendible the extrapola-
tion parameters are to other systems. We have attempted to
answer this question by carrying out fits that only include six
of the seven test systems, and using the omitted system as a
test of the extendibility of the coefficients. We carry out the
fits omitting each test system in turn and computing the error
of the omitted system. The rms error of the omitted systems
is then compared to the rms error obtained from fitting all
systems. The ratio of these errors range from 1.1 to 1.5,
depending on the energy being extrapolated, the basis type,
and theX involved in the fit. For the singlet pair energies,
which have the slowest convergence, the ratio ranges from
1.1 to 1.2. Thus we conclude that extrapolation parameters
we produce have good extendibility.

It is worth considering the special case H2. Since X
5 l max21 for H rather thanX5 l max for the first row ele-
ments, it seems likely that a different set of extrapolation
parameters might be required. We have carried out test cal-
culations atr 51.4a0 , and we find that the new extrapolation
formulas work just as well for H2 as for the seven test spe-
cies, in spite of the fact that the TP contribution to the cor-
relation energy is zero.

Although we do not consider weakly bound systems in
this work, there are other works in the literature that suggest
that the extrapolation schemes suggested here will work well
for weakly bound systems. Park and Lee19 found that for
dimers of He, HF, and H2O, accurate extrapolation to the
basis set limit could be obtained by using extrapolation rules
optimized for the monomers. However, compared to the
present work, they used different coefficients for each sys-
tem.

We also do not consider the extrapolation of the core-
valence correlation energy in the present work. Klopper10

gives values for the CCSD-R12 core-valence correlation for
the seven test species, and it would be straightforward to
apply the present method to deduce extrapolation coeffi-
cients. However, since the energies Klopper gives includes
the core correlation energy, it is not clear how to preferen-
tially extrapolate the core-valence energy, which is the en-
ergy of primary interest.
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