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We show that geometries can be optimized directly at a level corresponding to extrapolation to an infinite
basis set. Numerical examples demonstrate that geometries obtained with gradients extrapolated to the infinite-
basis limit agree well with geometries calculated with much bigger basis sets than those used for the calculation.
The method may also be used to calculate reaction paths or classical trajectories directly at the extrapolated
infinite-basis limit.

1. Introduction

In a recent paper,1 we proposed a practical scheme for
extrapolating electronic energies calculated with polarized
double- and triple-ú basis to the infinite basis-set limit. Numer-
ical tests showed that polarized-sextuple-ú accuracy could be
obtained for a small fraction of the cost. It was also remarked
that one could actually optimize geometries at the extrapolated
level because the extrapolated energy is a linear combination
of four components whose gradients and Hessians are available
in standard electronic structure packages. In the present letter,
we give examples showing that the method has been reduced
to practice and that it works very well.

The method is designed to eliminate the effect of a finite
one-electron basis set for a given treatment of the many-electron
correlation problem, e.g., Møller-Plesset second-order perturba-
tion theory (MP2) or the coupled clusters method with single
and double excitations (CCSD). In particular, it does not elimi-
nate effects due to incompleteness of the many-electron treat-
ment.

2. Theory

Under the power-law assumption of the previous paper,1 the
basis-set limit for the total energy can be expressed as

where EX
HF is the Hartree-Fock energy with a correlation-

consistent2 (cc-pVXZ) basis,EX
HF+cor is the correlated energy,

and the constants are given by
E∞

tot ) AE3
HF - AE2

HF + BE3
HF+cor - CE2

HF+cor (1)

TABLE 1: Optimized Geometry of Water

level basis set energy basis functionsr(HO) θ(HOH)

MP2 cc-pVDZ -76.2286665 24 0.965 101.97
cc-pVTZ -76.3186575 58 0.959 103.43
cc-pVQZ -76.3476395 115 0.958 103.97
TZ|DZ -76.3704151 0.957 103.96

CCSD cc-pVDZ -76.2382061 24 0.965 102.21
cc-pVTZ -76.3245565 58 0.957 103.90
cc-pVQZ -76.3508121 115 0.955 104.33
TZ|DZ -76.3689266 0.955 104.45

TABLE 2: Optimized Geometry of Ammonia

level basis set energy basis functionsr(HN) θ(HNH)

MP2 cc-pVDZ -56.3825050 29 1.024 103.92
cc-pVTZ -56.4529923 72 1.011 105.94
cc-pVQZ -56.4746549 145 1.010 106.46
TZ|DZ -56.4944137 1.007 106.59

CCSD cc-pVDZ -56.3984299 29 1.027 104.15
cc-pVTZ -56.4655362 72 1.012 105.96
cc-pVQZ -56.4835251 145 1.013 106.47
TZ|DZ -56.5004849 1.006 106.49
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This may be derived from the previous paper by noting that

As a consequence of eq 1, the gradient with respect to nuclear
coordinates can be expressed as

and the Lapacian can be written

All standard algorithms for geometry optimization can be
written in terms of the quantities in eqs 1, 6, and 7.3,4 The
Hessian is used to accelerate convergence to a stationary point
but has no effect on the final geometry. These same quantities
may also be used to compute reaction paths5-8 or to carry out
classical trajectory calculations.9,10

The theory was implemented using a modular interface
between the EF algorithm11-13 for optimization of stationary
points and the correlated-electronic-structure calculation capabil-
ity of GAUSSIAN94.14

3. Results
To illustrate the theory, we optimized the geometries of three

molecules, namely, H2O, NH3, and H2O2. We use Møller-
Plesset second-order perturbation theory15 (MP2) for all three
cases and the coupled-cluster approximation with single and
double excitations16 (CCSD) for two of them, for a total of five
examples. We use the frozen-core approximation in every case.
In each of the five cases, we performed geometry optimization
with cc-pVDZ (X ) 2), cc-pVTZ (X ) 3), and cc-pVQZ (X )
4) basis sets and also by extrapolation to an infinite basis from
X ) 2 and 3. The extrapolated calculations used the values of
R and â given in ref 1, in particularR ) 3.4, â ) 2.2 (for
MP2) andâ ) 2.4 (for CCSD). The results are given in Tables
1-3. In these tables, bond distancesr are in Å and bond angles
θ and dihedral angles are in degrees. Energies are in hartrees.
The notation TZ|DZ in the tables denotes our extrapolated value
based on the cc-pVDZ and cc-pVTZ basis sets.

4. Discussion
The tables show that the method is remarkably successful.

The geometrical parameters calculated with the infinite basis-

set extrapolations of the cc-pVDZ and cc-pVTZ gradients and
Hessians are remarkably close to the cc-pVQZ ones in all five
cases. It seems reasonable to assume that the extrapolated
geometries are actually closer to the infinite-basis results than
are the cc-pVQZ geometries. Even if this is not the case, the
tables indicate that the extrapolated results are much closer to
the quadruple-ú values than to the triple-ú ones, and that alone
makes the method very powerful.

We recall that for a given molecule, the computer time for
the MP2 and CCSD methods scales as the fourth power of the
number of basis functions for large systems.17 Thus, the
extrapolated calculations are about an order of magnitude faster
than cc-pVQZ. Perhaps even more significant is that cc-pVQZ
calculations are oftenprohibitiVelydifficult. Thus, although we
can test the extrapolated method for small systems such as those
considered here, the alternate to extrapolated results for larger
molecules will usually be unextrapolated cc-pVTZ results, which
are much less accurate, as illustrated in Tables 1-3.

5. Conclusions

Because the infinite-basis limit of correlated calculations can
be well approximated as a linear combination of results obtained
with polarized double- and triple-ú basis, it is possible to obtain
good approximations to infinite basis-set gradients and, there-
fore, to optimize geometries in the infinite-basis limit. One could
also use these infinite-basis gradients for direct dynamics8-10

calculations.
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TABLE 3: Optimized Geometry of Hydrogen Peroxide

level basis set energy basis functions r(OO) r(OH) θ(HOO) dihedral angle

MP2 cc-pVDZ -151.1705963 38 1.457 0.970 98.79 118.47
cc-pVTZ -151.3327818 88 1.450 0.964 99.29 114.36
cc-pVQZ -151.3844728 170 1.446 0.963 99.67 112.68
TZ|DZ -151.4269390 1.449 0.960 99.54 112.66

A ) ( 3R

3R - 2R - 3â

3â - 2â) (2)

B ) 3â

3â - 2â
(3)

C ) 2â

3â - 2â
(4)

3R

3R - 2R - 3â

3â - 2â
) 2R

3R - 2R - 2â

3â - 2â
(5)

∇E∞
tot ) A∇E3

HF - A∇E2
HF + B∇E3

HF+cor - C∇E2
HF+cor (6)

∇2E∞
tot ) A∇2E3

HF - A∇2E2
HF +

B∇2E3
HF+cor - C∇2E2

HF+cor (7)

652 J. Phys. Chem. A, Vol. 103, No. 6, 1999 Letters


