跳到主要內容區
 

1108HW

20221108HW

  • Plot potential energy curve of H2 + H → H + H2 reaction.

Step1 : Use the Gaussview interface to draw H2+H

Step2 : Calculated used MP2/aug-cc-pvtz scan method and basis set

reactant:

4

4

H1 and H2 is 0.85Å, and the distance between H2 and H3 is 0.95Å

low energy(products)

5

Step1 : Open Output file

Step2 : Open origin, paste distance and energy

Step3:plot→contour→contour-B/W Lines + Labels

5

5

6

  • Calculate the structures and atomization energies (AE) of AHn (A = H~Ne) with following method then compare with the experimental values.

optimization : MP2/6-31+G(d,p)、MP2/aug-cc-pVTZ、B3LYP/6-31+G(d,p)、B3LYP/aug-cc-pVTZ、single point energy、CCSD(T)/aug-cc-pVTZ

Computational Chemistry Comparison and Benchmark DataBase : https://cccbdb.nist.gov/xp1x.asp?prop=8 

實驗值來源1

實驗值來源2

  • Atomization energies:Enthalpy of atomization is the amount of enthalpy change when a compound's bonds are broken and the component atoms are separated into single atoms ( or monoatom ).

Step1 : Calculate Atomization energies of A and AHn using Gaussian interface.

Step2 : (H*n+A-AHn)*627.5905 ( kcal/mol ) 🠒AE,and so on

Step3 : Output file could view bond angle and bond length

  • Atomization energies 6-31+G(d,p)         (kcal/mol)
AHn MP2/6-31+G(d,p) B3LYP/6-31+G(d,p) exp.
H2 101.2 111.7 104.2
LiH 45.2 57.2 56.6
BeH2 141.0 155.7 151.6
BH3 269.5 286.7 270.3
CH4 399.4 422.8 397.5
NH3 274.9 300.2 280.3
H2O 220.5 229.6 221.6
HF 137.3 138.4 136.4

  • Atomization energies aug-cc-pVTZ     (kcal/mol)
AHn MP2/aug-cc-pVTZ B3LYP/aug-cc-pVTZ exp.
H2 103.8 110.1 104.2
LiH 51.8 58.5 56.6
BeH2 146.0 155.3 151.6
BH3 275.5 284.7 270.3
CH4 411.4 420.6 397.5
NH3 290.2 300.7 280.3
H2O 232.2 230.6 221.6
HF 143.7 139.1 136.4

  • Absolute error 
AHn MP2/6-31+G(d,p) B3LYP/6-31+G(d,p) MP2/aug-cc-pVTZ B3LYP/aug-cc-pVTZ
H2 3.0 7.5 0.4 5.9
LiH 11.4 0.6 4.8 1.9
BeH2 10.6 4.1 5.6 3.7
BH3 0.8 16.4 5.2 14.4
CH4 1.9 25.3 13.9 23.1
NH3 5.4 19.9 9.9 20.4
H2O 1.1 8.0 10.6 9.0
HF 0.9 2.0 7.3 2.7
MUE 4.4 10.5 7.2 10.1
  • CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ
AHn CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ exp.
H2 108.2 104.2
LiH 56.5 56.6
BeH2 145.6 151.6
BH3 276.4 270.3
CH4 427.9 397.5
NH3 291.0 280.3
H2O 228.6 221.6
HF 139.6 136.4
  • Absolute error
AHn CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ
H2 4
LiH 0.1
BeH2 6
BH3 6.1
CH4 30.4
NH3 10.7
H2O 7
HF 3.2
MUE 8.4

  • Analysis

4

  • Structure-bond length  (Å)
AHn MP2/6-31+G(d,p) B3LYP/6-31+G(d,p) MP2/aug-cc-pVTZ B3LYP/aug-cc-pVTZ exp.
H2 0.733 0.742 0.737 0.742 0.741
LiH 1.623 1.614 1.604 1.590 1.595
BeH2 1.328 1.331 1.330 1.325 1.326
BH3 1.185 1.192 1.187 1.187 1.190
CH4 1.086 1.092 1.086 1.088 1.087
NH3 1.011 1.015 1.012 1.013 1.012
H2O 0.963 0.965 0.961 0.961 0.958
HF 0.926 0.927 0.921 0.924 0.917
  • Structure-bond length (Å) absolute error
AHn MP2/6-31+G(d,p) B3LYP/6-31+G(d,p) MP2/aug-cc-pVTZ B3LYP/aug-cc-pVTZ
H2 0.007 0.002 0.004 0.002
LiH 0.028 0.019 0.010 0.005
BeH2 0.002 0.005 0.004 0.001
BH3

0.004

0.003

0.003 0.002
CH4 0.000 0.006 0.001 0.001
NH3 0.000 0.004 0.000 0.001
H2O 0.005

0.007

0.003

0.004

HF 0.01 0.011 0.005 0.007
MUE 0.007 0.007 0.004 0.003

  • Structure-bond angle (degree)
AHn MP2/6-31+G(d,p) B3LYP/6-31+G(d,p) MP2/aug-cc-pVTZ B3LYP/aug-cc-pVTZ exp.
H2 - - - - -
LiH - - - - -
BeH2 180.0 180.0 180 180.0 180.0
BH3 120.0 120.0 119.9 119.9 120.0
CH4 109.4 109.4 109.4 109.4 109.5
NH3 108.0 108.0 106.6 107.2 106.7
H2O 105.4 105.7 104.1 105.9 104.5
HF - - - - -

Conclusion

  • The same basis set, the MP2 method is closer to the experimental value.
瀏覽數:
登入成功