Please use ChatGPT to explore a thematic series of questions within the scope of computational chemistry and follow up with further inquiries about any unfamiliar terms ( except homework )
Calculate the structure and frequencies of XHn (X = H~Ne) by using B3LYP theoretical method
with 6-31+G(d,p) then compare with the experimental values.
B3LYP/6-31+G(d,p) | ||||||
molecular | bond length(Å) | EXP(Å) | error(Å) | bond angle(°) | EXP(°) | error(°) |
H2 | 0.743 | 0.741 | 0.002 | |||
LiH | 1.614 | 1.595 | 0.019 | |||
BeH2 | 1.331 | 1.326 | 0.005 | 180.0 | 180.0 | 0.0 |
BH3 | 1.193 | 1.19 | 0.003 | 120.0 | 120.0 | 0.0 |
CH4 | 1.093 | 1.087 | 0.006 | 109.5 | 109.5 | 0.0 |
NH3 | 1.016 | 1.012 | 0.004 | 108.1 | 106.7 | 1.4 |
H2O | 0.965 | 0.958 | 0.007 | 105.8 | 104.5 | 1.3 |
HF | 0.928 | 0.917 | 0.011 |
molecular | wavenumber(cm-1) | ||||||||
H2 | 4462.71 | ||||||||
LiH | 1401.27 | ||||||||
BeH2 | 735.40 | 735.40 | 2039.83 | 2262.42 | |||||
BH3 | 1157.81 | 1205.39 | 1205.40 | 2575.89 | 2703.48 | 2703.48 | |||
CH4 | 1347.86 | 1347.86 | 1347.86 | 1564.65 | 1564.65 | 3036.84 | 3150.16 | 3150.16 | 3150.16 |
NH3 | 1001.54 | 1673.91 | 1673.91 | 3483.68 | 3626.47 | 3626.47 | |||
H2O | 1628.11 | 3822.12 | 3948.12 | ||||||
HF | 4069.85 |
molecular | wavenumber(EXP) | ||||||||
H2 | 4401.20 | ||||||||
LiH | 1405.50 | ||||||||
BeH2 | 697.90 | 697.90 | 697.90 | 2159.10 | |||||
BH3 | 1147.50 | 1196.70 | 1196.70 | 2601.60 | 2601.60 | 2601.60 | |||
CH4 | 1306.00 | 1306.00 | 1306.00 | 1534.00 | 1534.00 | 2917.00 | 3019.00 | 3019.00 | 3019.00 |
NH3 | 950.00 | 1627.00 | 1627.00 | 3337.00 | 3444.00 | 3444.00 | |||
H2O | 1648.50 | 3832.20 | 3942.50 | ||||||
HF | 4138.40 |
molecular | absolute error(cm-1) | ||||||||
H2 | 61.51 | ||||||||
LiH | -4.23 | ||||||||
BeH2 | 37.50 | 37.50 | 1341.93 | 103.32 | |||||
BH3 | 10.31 | 8.69 | 8.70 | -25.71 | 101.88 | 101.88 | |||
CH4 | 41.86 | 41.86 | 41.86 | 30.65 | 30.65 | 119.84 | 131.16 | 131.16 | 131.16 |
NH3 | 51.54 | 46.91 | 46.91 | 146.68 | 182.47 | 182.47 | |||
H2O | -20.39 | -10.08 | 5.62 | ||||||
HF | -68.55 |
The bond lengths, bond angles, and wavenumber of XHn molecules calculated by B3LYP/6-31+G(d,p) are shown in the first table on the page.
The absolute errors between the calculated and experimental values are also shown.
The results show that the B3LYP/6-31+G(d,p) method can reproduce the experimental values reasonably well, with the exception of BeH2,
which has a large error in the bond length. This may be due to the fact that BeH2 is a linear molecule with a high degree of electron correlation, which is not well captured by the B3LYP functional.
Calculate the single point energy of XHn (X = H~Ne) by using CCSD(T) theoretical method with aug-cc-pVTZ ( the structure obtained from the previous homework ),
and then use those energy to calculate the standard enthalpy of formation (ΔH°f) then compare with the experimental values.
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The results show that the CCSD(T)/aug-cc-pVTZ method can reproduce the experimental values very well,
with MAE less than 6 kcal/mol for all molecules. The choice of the method and basis set for the structure does not affect the results significantly,
as the differences are within 0.5 kcal/mol for all molecules.