Supplementary Materials

Table S1. Calculated reaction energetics (in kcal/mol) of the S_N^2 and E2 pathways for theethyl halide systems at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level.

	S	$\delta_{\rm N}2$]	E2
	ΔV^{\neq}	ΔE_{rxn}	$\Delta V^{ eq}$	ΔE_{rxn}
$ClO^- + CH_3CH_2Cl$	$-7.1(-6.8)^{a}$	-24.4(-23.2)	0.0(-3.5)	-2.8(-5.5)
$BrO^- + CH_3CH_2Cl$	-6.7(-6.5)	-23.8(-22.8)	0.1(-3.5)	-1.1(-4.0)
$HS^- + CH_3CH_2Br$	-2.8(-2.6)	-26.2(-24.4)	9.6(6.0)	-2.7(-6.4)
$CN^- + CH_3CH_2I$	-2.3(-1.9)	-41.3(-38.9)	8.4(5.0)	-7.3(-9.5)

*a*Energy in the parentheses including the zero-point energy.

Molecules 2013, 18

				ClO-+CH	H_3Cl / Clo	$D^- + CD_3$	Cla		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	k ^{expt}	η_{trans}	$\eta_{ m rot}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIE ^{expt}
M06-2X/6-31+G**	-9.1	-29.3	1.55(-06)f		1.045	1.616	1.009	1.704	
M06-2X/6-311+G**	-9.2	-28.3	6.05(-07)		1.045	1.616	0.568	0.958	
M06-2X/aug-cc-pVDZ	-8.0	-26.1	5.81(-08)		1.045	1.616	0.510	0.861	
B3LYP/6-31+G**	-10.5	-27.1	1.66(-05)		1.045	1.613	0.638	1.076	
B3LYP/6-311+G**	-10.6	-26.1	2.56(-05)	2.01(-10)	1.045	1.611	0.669	1.126	0.85 + 0.01
B3LYP/aug-cc-pVDZ	-9.2	-24.1	1.15(-06)	2.01(-10)	1.045	1.612	0.553	0.932	0.83 ± 0.01
MP2/6-31+G**	-5.9	-27.6	2.76(-09)		1.045	1.615	0.542	0.914	
MP2/6-311+G**	-4.8	-27.3	4.26(-10)		1.045	1.569	0.354	0.581	
MP2/aug-cc-pVDZ	-8.5	-26.5	1.34(-07)		1.045	1.617	0.527	0.891	
MP2/aug-cc-pVTZ	-6.7	-23.1	7.00(-09)		1.045	1.615	0.554	0.935	
			($C1O^- + CH_3CH$	H_2Cl / Clo	$D^- + CD_3$	$_{3}$ CD ₂ Cl ^a		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kexpt	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIE ^{TST}	KIEexpt
M06-2X/6-31+G**	-8.6	-30.6	2.10(-08)		1.050	1.310	0.679	0.934	
M06-2X/6-311+G**	-8.9	-29.7	3.27(-08)		1.050	1.310	0.637	0.876	
M06-2X/aug-cc-pVDZ	-7.0	-27.2	1.31(-09)		1.050	1.310	0.632	0.870	
B3LYP/6-31+G**	-9.3	-28.4	4.02(-07)	2.25(-10)	1.050	1.310	0.785	1.079	0.99 ± 0.01
B3LYP/6-311+G**	-9.7	-27.4	8.69(-07)	2.23(-10)	1.050	1.309	0.801	1.100	0.99 ± 0.01
B3LYP/aug-cc-pVDZ	-7.9	-25.2	8.69(-07)		1.050	1.309	0.801	1.100	
MP2/6-31+G**	-5.0	-28.8	1.62(-10)		1.050	1.310	0.747	1.027	
MP2/6-311+G**	-4.4	-28.5	5.10(-11)		1.050	1.310	0.763	1.049	

Table S2. Calculated reaction energetics (in kcal/mol), the xperimental and theoretical rate constants (in cm³ molecule⁻¹ s⁻¹) and KIEs of the S_N^2 reactions (with low or small barrier heights) in the gas phase at various levels of theory.

MP2/aug-cc-pVDZ	-8.0	-27.6	1.58(-08)		1.050	1.310	0.718	0.987	
MP2/aug-cc-pVTZ	-6.0	-24.5	5.54(-10)		1.050	1.308	0.736	1.011	
				$BrO^{-} + CH$	$H_3Cl / Broken$	$D^- + CD_3$	Cla		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	k ^{expt}	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIEexpt
M06-2X/6-31+G**	-8.3	-27.3	1.85(-07)		1.059	1.622	0.601	1.033	
M06-2X/6-311+G**	-7.5	-25.9	3.11(-08)		1.059	1.623	0.563	0.968	
M06-2X/aug-cc-pVDZ	-6.2	-49.7	3.29(-09)		1.059	1.625	0.586	1.008	
B3LYP/6-31+G**	-10.0	-26.2	5.80(-06)		1.059	1.615	0.635	1.086	
B3LYP/6-311+G**	-9.3	-24.8	2.61(-06)	1.00(10)	1.059	1.616	0.716	1.226	0.92 ± 0.02
B3LYP/aug-cc-pVDZ	-8.0	-23.3	1.57(-07)	1.08(-10)	1.059	1.619	0.600	1.028	0.82 ± 0.03
MP2/6-31+G**	-5.3	-24.8	9.28(-10)		1.059	1.620	0.534	0.916	
MP2/6-311+G**	-3.6	-24.9	6.64(-11)		1.059	1.620	0.555	0.952	
MP2/aug-cc-pVDZ	-8.2	-26.3	9.10(-08)		1.059	1.625	0.520	0.894	
MP2/aug-cc-pVTZ	-6.4	-22.6	5.13(-09)		1.059	1.623	0.548	0.942	
			Η	$BrO^- + CH_3CH$	H ₂ Cl / BrO	$D^- + CD_3$	CD_2Cl^a		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kexpt	η_{trans}	$\eta_{ m rot}^{ eq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIE ^{TST}	KIE ^{expt}
M06-2X/6-31+G**	-8.7	-29.7	1.70(-08)		1.069	1.310	0.688	0.963	
M06-2X/6-311+G**	-7.0	-27.1	1.17(-09)		1.069	1.311	0.663	0.928	
M06-2X/aug-cc-pVDZ	-5.5	-25.2	5.88(-11)		1.069	1.312	0.611	0.857	
B3LYP/6-31+G**	-9.7	-28.6	4.04(-07)		1.069	1.308	0.764	1.068	
B3LYP/6-311+G**	-8.2	-26.0	7.23(-08)	1.07(-10)	1.069	1.309	0.769	1.076	0.96 ± 0.03
B3LYP/aug-cc-pVDZ	-6.6	-24.4	4.93(-09)		1.069	1.311	0.708	0.992	
MP2/6-31+G**	-5.3	-27.2	1.50(-10)		1.069	1.310	0.733	1.026	
MP2/6-311+G**	-3.1	-26.2	6.22(-12)		1.069	1.311	0.756	1.060	
MP2/aug-cc-pVDZ	-7.9	-27.8	1.33(-08)		1.069	1.312	0.710	0.995	

MP2/aug-cc-pVTZ	-6.0	-24.4	6.20(-10)		1.069	1.310	0.733	1.027	
				$HS^- + CH_3CH$	H_2Br / HS^2	$-+CD_3C$	CD_2Br^b		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kexpt	η_{trans}	$\eta_{ m rot}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIEexpt
M06-2X/6-31+G**	-5.0	-26.7	2.00(-10)		1.016	1.272	0.802	1.036	
M06-2X/6-311+G**	-5.0	-31.2	4.03(-10)		1.016	1.273	0.808	1.044	
M06-2X/aug-cc-pVDZ	-5.7	-31.8	9.56(-10)		1.016	1.273	0.788	1.019	
B3LYP/6-31+G**	-6.6	-25.2	1.78(-08)		1.016	1.273	0.842	1.088	
B3LYP/6-311+G**	-6.8	-29.3	7.79(-08)	1.05(10)	1.016	1.275	0.877	1.136	1.02 ± 0.07
B3LYP/aug-cc-pVDZ	-6.8	-29.7	7.00(-08)	1.95(-10)	1.016	1.275	0.848	1.098	1.02 ± 0.07
MP2/6-31+G**	-2.4	-32.8	1.45(-11)		1.016	1.272	0.850	1.098	
MP2/6-311+G**	-0.4	-33.9	1.02(-12)		1.016	1.272	0.907	1.171	
MP2/aug-cc-pVDZ	-3.0	-28.8	4.06(-11)		1.016	1.271	0.831	1.073	
MP2/aug-cc-pVTZ	-1.5	-26.3	3.02(-12)		1.016	1.270	0.842	1.087	
				C_{1-1}		CD I	1		
				CI + C	CH_3I / CI^-	$+CD_{3}I^{c}$, 		
	ΔV^{\neq}	ΔE _{rxn}	k ^{TST}	kexpt	η_{trans}	$+CD_3I^{e}$ $\eta_{\rm rot}^{\neq}$	$\eta_{ m vib}^{\neq}$	KIE ^{TST}	KIE ^{expt}
M06-2X/6-31+G**	ΔV≠ -7.2	ΔE _{rxn} -15.9	<i>k</i> ^{TST} 4.88(–07)	k ^{expt}	$\frac{\eta_{\text{trans}}}{1.006}$	$\frac{+CD_{3}l^{2}}{\eta_{\rm rot}^{\neq}}$ 1.230	$\eta_{\rm vib}^{\neq}$ 0.758	KIE ^{TST} 0.937	KIE ^{expt}
M06-2X/6-31+G** M06-2X/6-311+G**	ΔV^{\neq} -7.2 -6.9	ΔE _{rxn} -15.9 -16.3	<i>k</i> ^{TST} 4.88(-07) 3.21(-07)	k ^{expt}	$\frac{\eta_{\text{trans}}}{1.006}$	$+ CD_{3}r^{2}$ η_{rot}^{\neq} 1.230 1.230	$\eta_{\rm vib}^{\neq}$ 0.758 0.765	KIE ^{TST} 0.937 0.947	KIEexpt
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ	ΔV^{\neq} -7.2 -6.9 -8.1	ΔE_{rxn} -15.9 -16.3 -17.7	<i>k</i> ^{TST} 4.88(-07) 3.21(-07) 2.13(-06)	k ^{expt}	$\frac{\eta_{\text{trans}}}{1.006}$ 1.006 1.006	η_{rot}^{\neq} 1.230 1.230 1.230	$\eta_{\rm vib}^{\neq}$ 0.758 0.765 0.739	KIE ^{TST} 0.937 0.947 0.915	KIE ^{expt}
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G**	ΔV^{\neq} -7.2 -6.9 -8.1 -8.7	ΔE_{rxn} -15.9 -16.3 -17.7 -13.7	k ^{TST} 4.88(-07) 3.21(-07) 2.13(-06) 7.33(-06)	kexpt	$\frac{\eta_{\text{trans}}}{1.006}$ 1.006 1.006 1.006 1.006	η_{rot}^{\neq} 1.230 1.230 1.230 1.229	$\eta_{\rm vib}^{\neq}$ 0.758 0.765 0.739 0.775	KIE ^{TST} 0.937 0.947 0.915 0.958	KIE ^{expt}
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G**	ΔV^{\neq} -7.2 -6.9 -8.1 -8.7 -8.9	ΔE_{rxn} -15.9 -16.3 -17.7 -13.7 -14.4	k ^{TST} 4.88(-07) 3.21(-07) 2.13(-06) 7.33(-06) 1.28(-05)	k ^{expt}	$\frac{\eta_{\text{trans}}}{1.006}$ 1.006 1.006 1.006 1.006 1.006 1.006	$\frac{\eta_{rot}^{\neq}}{1.230}$ 1.230 1.230 1.229 1.229	$\eta_{\rm vib}^{\neq}$ 0.758 0.765 0.739 0.775 0.795	KIE ^{TST} 0.937 0.947 0.915 0.958 0.984	KIE ^{expt}
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ	ΔV^{\neq} -7.2 -6.9 -8.1 -8.7 -8.9 -9.3	ΔE_{rxn} -15.9 -16.3 -17.7 -13.7 -14.4 -15.4	k ^{TST} 4.88(-07) 3.21(-07) 2.13(-06) 7.33(-06) 1.28(-05) 1.82(-05)	<i>k</i> expt 1.66(-10)	$\frac{\eta_{\text{trans}}}{1.006}$ 1.006 1.006 1.006 1.006 1.006 1.006 1.006	$\frac{\eta_{rot}^{\neq}}{1.230}$ 1.230 1.230 1.229 1.229 1.229 1.229	$\eta_{\rm vib}^{\neq}$ 0.758 0.765 0.739 0.775 0.795 0.762	KIE ^{TST} 0.937 0.947 0.915 0.958 0.984 0.943	KIE^{expt} 0.84 ± 0.02
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ MP2/6-31+G**	$\Delta V^{\neq} -7.2 -6.9 -8.1 -8.7 -8.9 -9.3 -5.3$	$\begin{array}{c} \Delta E_{rxn} \\ -15.9 \\ -16.3 \\ -17.7 \\ -13.7 \\ -14.4 \\ -15.4 \\ -20.9 \end{array}$	k ^{TST} 4.88(-07) 3.21(-07) 2.13(-06) 7.33(-06) 1.28(-05) 1.82(-05) 1.65(-08)	<i>k</i> ^{expt} 1.66(-10)	$\frac{\eta_{\text{trans}}}{1.006}$ 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006	$\frac{\eta_{rot}^{\neq}}{1.230}$ 1.230 1.230 1.229 1.229 1.229 1.229 1.229	$\eta_{\rm vib}^{\neq}$ 0.758 0.765 0.739 0.775 0.795 0.762 0.733	KIE ^{TST} 0.937 0.947 0.915 0.958 0.984 0.943 0.906	KIE ^{expt}
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ MP2/6-31+G** MP2/6-311+G**	$\Delta V^{\neq} -7.2 -6.9 -8.1 -8.7 -8.9 -9.3 -5.3 -2.8$	$\begin{array}{c} \Delta E_{rxn} \\ -15.9 \\ -16.3 \\ -17.7 \\ -13.7 \\ -14.4 \\ -15.4 \\ -20.9 \\ -19.1 \end{array}$	kTST 4.88(-07) 3.21(-07) 2.13(-06) 7.33(-06) 1.28(-05) 1.82(-05) 1.65(-08) 3.17(-10)	<i>k</i> ^{expt}	$\frac{\eta_{\text{trans}}}{1.006}$ 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006	$\frac{\eta_{rot}^{\neq}}{1.230}$ 1.230 1.230 1.229 1.229 1.229 1.229 1.229 1.229 1.231		KIE ^{TST} 0.937 0.947 0.915 0.958 0.984 0.943 0.906 0.946	KIE ^{expt}
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ MP2/6-31+G** MP2/6-311+G** MP2/aug-cc-pVDZ	$\Delta V^{\neq} \\ -7.2 \\ -6.9 \\ -8.1 \\ -8.7 \\ -8.9 \\ -9.3 \\ -5.3 \\ -2.8 \\ -4.2 \\ -4.2$	$\begin{array}{c} \Delta E_{rxn} \\ -15.9 \\ -16.3 \\ -17.7 \\ -13.7 \\ -14.4 \\ -15.4 \\ -20.9 \\ -19.1 \\ -11.9 \end{array}$	kTST 4.88(-07) 3.21(-07) 2.13(-06) 7.33(-06) 1.28(-05) 1.82(-05) 1.65(-08) 3.17(-10) 2.32(-09)	<i>k</i> ^{expt}	$\frac{\eta_{\text{trans}}}{\eta_{\text{trans}}}$ 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006	$η_{rot}^{≠}$ 1.230 1.230 1.229 1.229 1.229 1.229 1.229 1.229 1.229 1.221 1.231	$\eta_{\rm vib}^{\neq}$ 0.758 0.765 0.739 0.775 0.795 0.762 0.762 0.733 0.764 0.717	KIE ^{TST} 0.937 0.947 0.915 0.958 0.984 0.943 0.906 0.946 0.889	KIE^{expt} 0.84 ± 0.02
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ MP2/6-311+G** MP2/aug-cc-pVDZ MP2/aug-cc-pVTZ	$\Delta V^{\neq} \\ -7.2 \\ -6.9 \\ -8.1 \\ -8.7 \\ -8.9 \\ -9.3 \\ -5.3 \\ -2.8 \\ -4.2 \\ -3.0 \\ -3.0 \\ -7.2$	$\begin{array}{r} \Delta E_{rxn} \\ -15.9 \\ -16.3 \\ -17.7 \\ -13.7 \\ -14.4 \\ -15.4 \\ -20.9 \\ -19.1 \\ -11.9 \\ -10.5 \end{array}$	k ^{TST} 4.88(-07) 3.21(-07) 2.13(-06) 7.33(-06) 1.28(-05) 1.82(-05) 1.65(-08) 3.17(-10) 2.32(-09) 3.10(-10)	<i>k</i> ^{expt}	$\frac{\eta_{\text{trans}}}{1.006}$ 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006 1.006	$\begin{array}{r} + CD_{3}r^{\epsilon} \\ \eta_{rot}^{\epsilon} \\ 1.230 \\ 1.230 \\ 1.229 \\ 1.229 \\ 1.229 \\ 1.229 \\ 1.229 \\ 1.221 \\ 1.231 \\ 1.231 \\ 1.231 \end{array}$		KIE ^{TST} 0.937 0.947 0.915 0.958 0.984 0.943 0.906 0.946 0.889 0.914	KIE ^{expt} 0.84 ± 0.02

				$Br^{-} + C$	CH ₃ I / Br-	$-+CD_3I^{l}$)		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kexpt	η_{trans}	$\eta_{ m rot}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIE ^{expt}
M06-2X/6-31+G**	-7.9	-10.4	1.43(-06)		1.011	1.240	0.756	0.949	
M06-2X/6-311+G**	-4.2	-7.5	4.06(-09)		1.011	1.241	0.769	0.965	
M06-2X/aug-cc-pVDZ	-5.2	-7.2	1.93(-08)		1.011	1.240	0.740	0.928	
B3LYP/6-31+G**	-9.1	-9.3	1.44(-05)		1.011	1.239	0.778	0.975	
B3LYP/6-311+G**	-6.4	-7.1	2.55(-07)		1.011	1.239	0.811	1.016	
B3LYP/aug-cc-pVDZ	-6.8	-6.9	3.26(-07)	2.90(-11)	1.011	1.239	0.765	0.959	0.76 ± 0.02
MP2/6-31+G**	-2.3	-11.2	1.11(-10)	2.89(-11)	1.011	1.240	0.741	0.929	0.70 ± 0.03
MP2/6-311+G**	0.1	-9.2	3.74(-12)		1.011	1.242	0.797	1.001	
MP2/aug-cc-pVDZ	-2.5	-5.2	1.71(-10)		1.011	1.241	0.731	0.918	
MP2/aug-cc-pVDZ ang	-2.5	-5.2	1.72(-10)		1.011	1.241	0.751	0.943	
MP2/aug-cc-pVDZ an vibrot ^h	-2.5	-5.2	1.67(-10)		1.011	1.241	0.723	0.907	
MP2/aug-cc-pVTZ	-1.8	-4.6	6.01(-11)		1.011	1.241	0.760	0.954	
				$CN^{-} + C$	CH_3I/CN	$[-+CD_3]$	[C		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kexpt	η_{trans}	$\eta_{ m rot}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIE^{TST}	KIE ^{expt}
M06-2X/6-31+G**	-8.7	-52.9	3.20(-07)		1.005	1.228	0.767	0.946	
M06-2X/6-311+G**	-8.1	-52.5	1.93(-07)		1.005	1.228	0.753	0.928	
M06-2X/aug-cc-pVDZ	-8.7	-52.6	5.84(-07)		1.005	1.228	0.739	0.912	
B3LYP/6-31+G**	-9.4	-51.2	1.25(-06)		1.005	1.227	0.771	0.950	
B3LYP/6-311+G**	-9.2	-51.9	1.35(-06)	1 28(10)	1.005	1.227	0.788	0.972	0.84 ± 0.03
B3LYP/aug-cc-pVDZ	-9.6	-51.7	2.38(-06)	1.28(-10)	1.005	1.227	0.758	0.934	0.84 ± 0.03
MP2/6-31+G**	-6.4	-55.6	1.36(-08)		1.005	1.227	0.728	0.898	
MP2/6-311+G**	-3.7	-51.7	4.63(-10)		1.005	1.229	0.747	0.923	
MP2/aug-cc-pVDZ	-6.4	-48.8	4.39(-09)		1.005	1.229	0.713	0.881	
MP2/aug-cc-pVTZ	-4.6	-45.6	2.32(-10)		1.005	1.229	0.715	0.883	

CCSD(T)/aug-cc-pVTZ	-5.4	-43.7	1.04(-09)		1.005	1.228	0.731	0.902	
				$CN^- + CH_3C$	CH ₂ I / CN	$[- + CD_3]$	CD_2I^c		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kexpt	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIE ^{expt}
M06-2X/6-31+G**	-6.0	-51.5	2.34(-09)		1.007	1.265	0.742	0.944	
M06-2X/6-311+G**	-5.6	-51.3	8.04(-10)		1.007	1.266	0.715	0.911	
M06-2X/aug-cc-pVDZ	-6.1	-51.0	5.50(-09)		1.007	1.262	0.717	0.911	
B3LYP/6-31+G**	-6.1	-49.9	5.49(-09)		1.007	1.270	0.769	0.983	
B3LYP/6-311+G**	-6.2	-50.6	7.44(-09)	2.00(-11)	1.007	1.270	0.784	1.003	0.89 ± 0.02
B3LYP/aug-cc-pVDZ	-6.4	-50.3	1.27(-08)	2.99(-11)	1.007	1.270	0.761	0.973	0.89 ± 0.02
MP2/6-31+G**	-2.6	-53.8	3.11(-11)		1.007	1.264	0.739	0.941	
MP2/6-311+G**	-0.4	-49.9	9.28(-13)		1.007	1.264	0.765	0.974	
MP2/aug-cc-pVDZ	-2.8	-45.9	1.52(-11)		1.007	1.264	0.724	0.921	
MP2/aug-cc-pVTZ	-0.9	-42.9	5.48(-13)		1.007	1.263	0.727	0.924	
				$Cl^- + CH$	I ₃ Br / Cl ⁻	$+ CD_3B$	\mathbf{r}^d		
	ΔV^{\neq}	ΔE _{rxn}	k ^{TST}	$Cl^- + CH$ k^{expt}	H_3Br / Cl^- η_{trans}	$r + CD_3B$ η_{rot}^{\neq}	r^d $\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIEexpt
M06-2X/6-31+G**	ΔV^{\neq} -4.6	ΔE_{rxn} -5.6	<i>k</i> ^{TST} 3.79(-09)	$Cl^- + CH$ k^{expt}	$\frac{I_3 Br / Cl^{-1}}{\eta_{trans}}$	$\frac{1}{\eta_{\rm rot}^{\neq}} + CD_3B}{\eta_{\rm rot}^{\neq}}$	$\frac{\eta_{\text{vib}}^{\neq}}{0.752}$	KIE ^{TST}	KIEexpt
M06-2X/6-31+G** M06-2X/6-311+G**	$\frac{\Delta V^{\neq}}{-4.6}$ -3.7	ΔE _{rxn} -5.6 -8.8	<i>k</i> ^{TST} 3.79(-09) 1.53(-09)	Cl ⁻ + CH k ^{expt}	$\frac{\text{H}_{3}\text{Br} / \text{Cl}^{-}}{\eta_{\text{trans}}}$ $\frac{\eta_{\text{trans}}}{1.013}$ 1.013	$\frac{\eta_{\text{rot}}^{\neq}}{1.234}$	$\frac{r^d}{\eta_{\rm vib}^{\neq}}$ 0.752 0.764	KIE ^{TST} 0.940 0.955	KIE ^{expt}
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ	ΔV^{\neq} -4.6 -3.7 -5.0	ΔE _{rxn} -5.6 -8.8 -10.5	<i>k</i> ^{TST} 3.79(-09) 1.53(-09) 1.25(-08)	$\frac{Cl^{-} + CH}{k^{expt}}$	$\frac{H_{3}Br / Cl^{-1}}{\eta_{trans}}$ 1.013 1.013 1.013	$+ CD_3B$ η_{rot}^{\neq} 1.234 1.233 1.233	$ \frac{\eta_{\rm vib}^{\neq}}{0.752} \\ 0.764 \\ 0.744 $	KIE ^{TST} 0.940 0.955 0.929	KIEexpt
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G**	ΔV^{\neq} -4.6 -3.7 -5.0 -6.2	ΔE_{rxn} -5.6 -8.8 -10.5 -4.4	<i>k</i> TST 3.79(-09) 1.53(-09) 1.25(-08) 8.49(-08)	$\frac{Cl^- + CH}{k^{expt}}$	$\frac{H_{3}Br / Cl^{-1}}{\eta_{trans}}$ 1.013 1.013 1.013 1.013 1.013	$r + CD_3B$ η_{rot}^{\neq} 1.234 1.233 1.233 1.232	$ \frac{r^d}{\eta_{\rm vib}^{\neq}} \\ 0.752 \\ 0.764 \\ 0.744 \\ 0.783 $	KIE ^{TST} 0.940 0.955 0.929 0.977	KIEexpt
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G**	ΔV^{\neq} -4.6 -3.7 -5.0 -6.2 -5.7	ΔE_{rxn} -5.6 -8.8 -10.5 -4.4 -7.3	<i>k</i> ^{TST} 3.79(-09) 1.53(-09) 1.25(-08) 8.49(-08) 6.90(-08)	$Cl^- + CF$ k^{expt}	$\frac{H_{3}Br / Cl^{-1}}{\eta_{trans}}$ 1.013 1.013 1.013 1.013 1.013 1.013 1.013	$ \frac{\eta_{rot}^{\neq}}{1.234} $ 1.233 1.233 1.232 1.232	r^{d} η^{\neq}_{vib} 0.752 0.764 0.744 0.783 0.814	KIE ^{TST} 0.940 0.955 0.929 0.977 1.016	KIEexpt
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ	$\Delta V^{\neq} -4.6 \\ -3.7 \\ -5.0 \\ -6.2 \\ -5.7 \\ -6.3$	ΔE_{rxn} -5.6 -8.8 -10.5 -4.4 -7.3 -8.5	<i>k</i> TST 3.79(-09) 1.53(-09) 1.25(-08) 8.49(-08) 6.90(-08) 1.52(-07)	Cl ⁻ + CF k ^{expt} 2.37(-11)	$ \frac{H_3Br / Cl^{-1}}{\eta_{trans}} 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 $		$ \frac{r^{d}}{\eta_{\rm vib}^{\neq}} \\ 0.752 \\ 0.764 \\ 0.744 \\ 0.783 \\ 0.814 \\ 0.774 $	KIE ^{TST} 0.940 0.955 0.929 0.977 1.016 0.966	KIE ^{expt} 0.88 ± 0.45
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ MP2/6-31+G**	$\Delta V^{\neq} -4.6 \\ -3.7 \\ -5.0 \\ -6.2 \\ -5.7 \\ -6.3 \\ -1.8$	$\frac{\Delta E_{rxn}}{-5.6} \\ -8.8 \\ -10.5 \\ -4.4 \\ -7.3 \\ -8.5 \\ -9.7$	<i>k</i> TST 3.79(-09) 1.53(-09) 1.25(-08) 8.49(-08) 6.90(-08) 1.52(-07) 3.68(-11)	$\frac{Cl^- + CF}{k^{expt}}$ 2.37(-11)	$ \frac{H_3Br / Cl^{-1}}{\eta_{trans}} 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 $	$ \frac{\eta_{rot}^{\neq}}{1.234} $ 1.233 1.233 1.232 1.232 1.232 1.232 1.232 1.233	$ \frac{r^{d}}{\eta_{\rm vib}^{\neq}} \\ 0.752 \\ 0.764 \\ 0.744 \\ 0.783 \\ 0.814 \\ 0.774 \\ 0.749 $	KIE ^{TST} 0.940 0.955 0.929 0.977 1.016 0.966 0.936	KIE ^{expt} 0.88 ± 0.45
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ MP2/6-31+G** MP2/6-311+G**	$\Delta V^{\neq} -4.6 \\ -3.7 \\ -5.0 \\ -6.2 \\ -5.7 \\ -6.3 \\ -1.8 \\ 1.9$	$\begin{array}{c} \Delta E_{rxn} \\ -5.6 \\ -8.8 \\ -10.5 \\ -4.4 \\ -7.3 \\ -8.5 \\ -9.7 \\ -9.9 \end{array}$	<i>k</i> TST 3.79(-09) 1.53(-09) 1.25(-08) 8.49(-08) 6.90(-08) 1.52(-07) 3.68(-11) 1.53(-13)	Cl ⁻ + CF <i>k</i> ^{expt} 2.37(-11)	H ₃ Br / Cl ⁻ η _{trans} 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013	$ \frac{\eta_{rot}^{\neq}}{1.234} $ 1.233 1.233 1.232 1.232 1.232 1.232 1.233 1.235	r^{d} η^{\neq}_{vib} 0.752 0.764 0.744 0.783 0.814 0.774 0.749 0.782	KIE ^{TST} 0.940 0.955 0.929 0.977 1.016 0.966 0.936 0.978	KIE ^{expt} 0.88 ± 0.45
M06-2X/6-31+G** M06-2X/6-311+G** M06-2X/aug-cc-pVDZ B3LYP/6-31+G** B3LYP/6-311+G** B3LYP/aug-cc-pVDZ MP2/6-31+G** MP2/6-311+G** MP2/aug-cc-pVDZ	$\Delta V^{\neq} -4.6 \\ -3.7 \\ -5.0 \\ -6.2 \\ -5.7 \\ -6.3 \\ -1.8 \\ 1.9 \\ -1.5$	$\begin{array}{c} \Delta E_{rxn} \\ -5.6 \\ -8.8 \\ -10.5 \\ -4.4 \\ -7.3 \\ -8.5 \\ -9.7 \\ -9.9 \\ -6.7 \end{array}$	<i>k</i> TST 3.79(-09) 1.53(-09) 1.25(-08) 8.49(-08) 6.90(-08) 1.52(-07) 3.68(-11) 1.53(-13) 3.22(-11)	Cl ⁻ + CF <i>k</i> ^{expt} 2.37(-11)	H ₃ Br / Cl ⁻ <u>η_{trans}</u> 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013		r^{d} η_{vib}^{\neq} 0.752 0.764 0.764 0.744 0.783 0.814 0.774 0.749 0.782 0.782 0.732	KIETST 0.940 0.955 0.929 0.977 1.016 0.966 0.936 0.978 0.915	KIE ^{expt} 0.88 ± 0.45

MP2/aug-cc-pVDZ an vibrot ^h	-1.5	-6.7	3.28(-11)		1.013	1.234	0.738	0.923	
MP2/aug-cc-pVTZ	-0.7	-5.9	9.37(-12)		1.013	1.234	0.770	0.963	
CCSD(T)/aug-cc-pVTZ	-2.1	-6.2	4.93(-11)		1.013	1.233	0.775	0.967	
				$CH_3Cl + F^-(H_3)$	I ₂ O) / CD	$P_{3}Cl + F^{-}($	$(H_2O)^e$		
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kexpt	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIE ^{expt}
M06-2X/6-31+G**	-3.3	-23.3	3.87(-12)		1.037	1.652	0.477	0.818	
M06-2X/6-311+G**	-4.4	-23.5	5.51(-11)		1.037	1.328	0.593	0.817	
M06-2X/aug-cc-pVDZ	-3.6	-22.5	1.15(-12)		1.037	1.668	0.456	0.790	
B3LYP/6-31+G**	-6.2	-20.2	1.16(-08)		1.037	1.631	0.518	0.876	
B3LYP/6-311+G**	-7.2	-20.4	1.25(-07)	1 40(11)	1.037	1.531	0.591	0.938	0.95 + 0.02
B3LYP/aug-cc-pVDZ	-5.9	-19.4	4.68(-09)	1.49(-11)	1.037	1.641	0.491	0.835	0.85 ± 0.05
MP2/6-31+G**	1.2	-15.2	8.82(-14)		1.037	1.618	0.502	0.842	
MP2/6-311+G**	2.9	-15.3	8.41(-15)		1.037	1.554	0.531	0.856	
MP2/aug-cc-pVDZ	-2.7	-17.5	7.01(-12)		1.037	1.660	0.481	0.829	
MP2/aug-cc-pVTZ	-0.5	-17.0	3.63(-13)		1.037	1.655	0.513	0.882	

^{*a*}Experimental values from ref. 15 at 302 K.

^bExperimental values from ref. 8, calculations done at 300 K.

^cExperimental values from ref. 16 at 298 K.

^dExperimental values from ref. 18 at 300 K.

^eExperimental values from ref. 20 at 302 K.

 $f_{1.55(-06)}$ means 1.55 \times 10⁻⁶

gAnharmonic frequencies were calculated at the MP2/aug-cc-pVDZ level.

^hAnharmonic vibrational-rotational couplings were calculated at the MP2/aug-cc-pVDZ level.

Molecules 2013, 18

					CN-+ ($CH_3I / CN^- + C$	^C D ₃ I				
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kcap	kexpt	Efficiency	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIEexpt
M06-2X/6-31+G**	-8.7	-52.9	$3.20(-07)^{b}$				1.005	1.228	0.767	0.946	
M06-2X/6-311+G**	-8.1	-52.5	1.93(-07)				1.005	1.228	0.753	0.928	
M06-2X/aug-cc-pVDZ	-8.7	-52.6	5.84(-07)				1.005	1.228	0.739	0.912	
B3LYP/6-31+G**	-9.4	-51.2	1.25(-06)				1.005	1.227	0.771	0.950	
B3LYP/6-311+G**	-9.2	-51.9	1.35(-06)				1.005	1.227	0.788	0.972	
B3LYP/aug-cc-pVDZ	-9.6	-51.7	2.38(-06)	2.44(-09)	1.28(-10)	0.052	1.005	1.227	0.758	0.934	0.84 ± 0.03
MP2/6-31+G**	-6.4	-55.6	1.36(-08)		``		1.005	1.227	0.728	0.898	
MP2/6-311+G**	-3.7	-51.7	4.63(-10)				1.005	1.229	0.747	0.923	
MP2/aug-cc-pVDZ	-6.4	-48.8	4.39(-09)				1.005	1.229	0.713	0.881	
MP2/aug-cc-pVTZ	-4.6	-45.6	2.32(-10)				1.005	1.229	0.715	0.883	
CCSD(T)/aug-cc-pVTZ	-5.4	-43.7	1.04(-09)				1.005	1.228	0.731	0.902	
					$CN^- + CH_3O$	$CH_2I / CN^- + C$	CD ₃ CD ₂ I				
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kcap	kexpt	Efficiency	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIE ^{TST}	KIEexpt
M06-2X/6-31+G**	-6.0	-51.5	2.34(-09)				1.007	1.265	0.742	0.944	
M06-2X/6-311+G**	-5.6	-51.3	8.04(-10)				1.007	1.266	0.715	0.911	
M06-2X/aug-cc-pVDZ	-6.1	-51.0	5.50(-09)				1.007	1.262	0.717	0.911	
B3LYP/6-31+G**	-6.1	-49.9	5.49(-09)	2.81(-09)	2.99(-11)	0.011	1.007	1.270	0.769	0.983	0.89 ± 0.02
B3LYP/6-311+G**	-6.2	-50.6	7.44(-09)				1.007	1.270	0.784	1.003	
B3LYP/aug-cc-pVDZ	-6.4	-50.3	1.27(-08)				1.007	1.270	0.761	0.973	
MP2/6-31+G**	-2.6	-53.8	3.11(-11)				1.007	1.264	0.739	0.941	

Table S3. Calculated reaction energetics (in kcal/mol), and a comparison of experimental and theoretical rate constants (in cm³ molecule⁻¹ s⁻¹) of the CN⁻ + CH₃I, CN⁻ + CH₃CH₂I, CN⁻ + (CH₃)₂CHI, and CN⁻ + (CH₃)₃CI reactions.^{*a*}

MP2/6-311+G**	-0.4	-49.9	9.28(-13)				1.007	1.264	0.765	0.974	
MP2/aug-cc-pVDZ	-2.8	-45.9	1.52(-11)				1.007	1.264	0.724	0.921	
MP2/aug-cc-pVTZ	-0.9	-42.9	5.48(-13)				1.007	1.263	0.727	0.924	
					$CN^{-} + (CH_3)_2$	$CHI/CN^{-}+(0)$	$(CD_3)_2CD_3$	I			
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kcap	kexpt	Efficiency	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIEexpt
M06-2X/6-31+G**	-2.9	-50.2	2.50(-11)				1.008	1.170	0.869	1.024	
M06-2X/6-311+G**	-2.8	-50.3	2.21(-11)				1.008	1.170	0.903	1.065	
M06-2X/aug-cc-pVDZ	-3.2	-49.8	7.95(-11)				1.008	1.168	0.846	0.996	
B3LYP/6-31+G**	-2.9	-49.1	4.53(-11)				1.008	1.172	0.872	1.030	
B3LYP/6-311+G**	-3.3	-49.9	8.32(-11)	200(00)	<1.00(-12)	<0.0002	1.008	1.172	0.880	1.039	
B3LYP/aug-cc-pVDZ	-3.4	-49.4	1.15(-10)	2.90(-09)	<1.00(-12)	< 0.0003	1.008	1.172	0.850	1.005	—
MP2/6-31+G**	1.5	-52.5	2.01(-14)				1.008	1.169	0.813	0.957	
MP2/6-311+G**	3.3	-48.8	8.12(-16)				1.008	1.169	0.832	0.980	
MP2/aug-cc-pVDZ	1.4	-43.5	1.86(-14)				1.008	1.170	0.787	0.928	
MP2/aug-cc-pVTZ	3.5	-40.5	4.51(-16)				1.008	1.169	0.800	0.943	
					$CN^- + (CH_3)$	$)_{3}$ CI / CN ⁻ + (0	CD ₃) ₃ CI				
	ΔV^{\neq}	ΔE_{rxn}	k ^{TST}	kcap	kexpt	Efficiency	η_{trans}	$\eta_{\mathrm{rot}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	KIETST	KIEexpt
M06-2X/6-31+G**	4.1	-49.6	1.80(-14)				1.009	1.133	1.146	1.310	
M06-2X/6-311+G**	3.4	-49.9	7.52(-14)				1.009	1.133	1.236	1.413	
M06-2X/aug-cc-pVDZ	3.6	-49.2	3.87(-14)				1.009	1.134	1.131	1.293	
B3LYP/6-31+G**	3.9	-48.8	6.30(-14)	212(-00)	1 10(11)	0.004	1.009	1.131	1.165	1.329	> 0
B3LYP/6-311+G**	3.3	-49.5	2.41(-13)	3.13(-09)	1.10(-11)	0.004	1.009	1.131	1.186	1.353	~8
B3LYP/aug-cc-pVDZ	3.5	-49.0	1.53(-13)				1.009	1.131	1.160	1.324	
MP2/6-31+G**	11.9	-51.6	1.06(-18)				1.009	1.134	1.268	1.450	
MP2/6-311+G**	14.5	-48.2	3.59(-21)				1.009	1.134	1.147	1.313	

	Mol	ecules	2013.	. 18
--	-----	--------	-------	------

MP2/aug-cc-pVDZ	13.9 -41.6 2.42(-23)	1.009	1.129	0.767	0.873
MP2/aug-cc-pVTZ	15.9 -38.5 4.14(-26)	1.009	1.129	1.059	1.206

^aExperimental values from ref. 16 at 298 K. ^b3.02(-07) means 3.02×10^{-7}

Molecules 2013, 18

Table S4. Fitted barrier heights (kcal/mol) for

Table 6 at the experimental temperature.

	barrier height
$ClO^- + CH_3Cl$	-4.6
$ClO^- + CH_3CH_2Cl$	-5.5
$BrO^- + CH_3CH_2Cl$	-5.0
$Cl^- + CH_3Br$	-1.3
$F^{-}(H_2O) + CH_3Cl$	-3.2
$HS^- + CH_3CH_2Br$	-4.0

	ΛV≠	$\Delta E_{\rm rxn}$	ion-dipole	e complex	zero-point energy		
	ΔV		reactant-side	product-side	reactants	transition state	
$ClO^- + CH_3Cl$	-8.5	-26.5	-13.5	-37.3	24.9	25.5	
$ClO^- + CH_3CH_2Cl$	-8.0	-27.6	-15.2	-39.5	43.1	43.4	
$BrO^- + CH_3Cl$	-8.2	-26.3	-13.6	-36.7	24.9	25.4	
$BrO^- + CH_3CH_2Cl$	-7.9	-27.8	-15.4	-39.3	43.0	43.2	
$HS^- + CH_3CH_2Br$	-3.0	-28.8	-12.3	-38.6	45.5	45.8	
$Cl^- + CH_3I$	-4.2	-11.9	-11.7	-21.7	23.1	23.2	
$Br^- + CH_3I$	-2.5	-5.2	-11.4	-15.5	23.1	23.0	
$CN^- + CH_3I$	-6.4	-48.8	-10.8	-61.4	25.8	26.4	
$CN^- + CH_3CH_2I$	-2.8	-45.9	-13.4	-60.3	44.1	44.6	
$Cl^- + CH_3Br$	-1.5	-6.7	-11.6	-17.4	23.5	23.4	
$F^{-}(H_2O) + CH_3Cl$	-2.7	-17.5	-13.5	-27.5	38.0	39.4	

 $\label{eq:solution} \textbf{Table S5.} Calculated energies (in kcal/mol) of eleven gas-phase S_N2 reactions at the MP2/aug-cc-pVDZ level.$

Table S6. Factor analysis of η_{vib}^{\neq} ($\eta_{vib}^{\neq} = \eta_{vib,low}^{\neq} \eta_{vib,mid}^{\neq} \eta_{vib,high}^{\neq}$)^{*a*} for the ClO⁻ + CH₃CH₂Cl, BrO⁻ + CH₃CH₂Cl, and

 $HS^- + CH_3CH_2Br$ reactions at different temperature.

	$ClO^- + CH_3CH_2Cl$			$BrO^- + CH_3CH_2Cl$				$HS^- + CH_3CH_2Br$				
T(K)	$\eta_{\mathrm{vib}}^{\neq}$	$\eta_{\rm vib,low}^{\neq}$	$\eta_{\mathrm{vib,mid}}^{\neq}$	$\eta_{\mathrm{vib,high}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	$\eta_{\rm vib,low}^{\neq}$	$\eta_{\mathrm{vib,mid}}^{\neq}$	$\eta_{\mathrm{vib,high}}^{\neq}$	$\eta_{\mathrm{vib}}^{\neq}$	$\eta_{\rm vib,low}^{\neq}$	$\eta_{\mathrm{vib,mid}}^{\neq}$	$\eta_{\mathrm{vib,high}}^{\neq}$
100	0.636	0.733	1.401	0.620	0.639	0.724	1.414	0.625	0.957	0.819	2.150	0.543
200	0.703	0.754	1.183	0.787	0.698	0.743	1.188	0.790	0.868	0.806	1.463	0.737
300	0.717	0.759	1.109	0.853	0.710	0.746	1.112	0.855	0.831	0.803	1.269	0.816
400	0.719	0.760	1.066	0.887	0.710	0.748	1.068	0.889	0.807	0.801	1.172	0.859
500	0.718	0.761	1.038	0.909	0.708	0.748	1.039	0.911	0.791	0.801	1.116	0.886
600	0.718	0.761	1.020	0.925	0.707	0.748	1.020	0.926	0.782	0.801	1.080	0.905

a"low" denotes contributions from mode with $v_i < 500 \text{ cm}^{-1}$; "high" denotes contributions from mode with $v_i > 2000 \text{ cm}^{-1}$; and "mid" denotes the remaining contributions from the middle frequencies.