Supporting Information for "Theoretical Modeling of the Hydrogen Abstraction Reaction of Fluoromethane by the Hydroxyl Radical"

Pei-Yin Lien, Ru-Min You, and Wei-Ping Hu^{*} Department of Chemistry, National Chung Cheng University Chia-Yi, Taiwan 621, ROC

E-mail: chewph@ccunix.ccu.edu.tw Fax: 886-5-272-1040

*To whom correspondence should be addressed

Submitted for publication on J. Phys. Chem. A

November 27, 2000

19 Tables in 14 Pages

CH ₃ F			
Atom	Х	Y	Z
F	0.000000	0.000000	0.000000
С	0.000000	0.000000	1.405000
Н	1.032620	0.000000	1.744508
Н	-0.516310	0.894275	1.744508
Н	-0.516310	-0.894275	1.744508

 Table S1: Cartesian Coordinates (in angstroms) of the Reactants Calculated at

 MP2/6-31+G** level

ОН

Atom	Х	Y	Ζ
0	0.000000	0.000000	0.108156
Н	0.000000	0.000000	-0.865244

CH ₂ F			
Atom	Х	Y	Ζ
С	-0.032754	0.669236	0.000000
F	-0.032754	-0.690500	0.000000
Н	0.245654	1.099542	0.947834
Н	0.245654	1.099542	-0.947834

 Table S2:
 Cartesian Coordinates (in angstroms) of the Products Calculated at MP2/6-31+G** level

H₂O

Atom	Х	Y	Ζ
Н	0.000000	0.766226	-0.466896
0	0.000000	0.000000	0.116724
Н	0.000000	-0.766226	-0.466896

Table S3: Cartesian Coordinates (in angstroms) of the Transition State Calculated at MP2/6-31+G** level

1711			
Atom	Х	Y	Ζ
С	-0.597006	0.650131	0.000005
F	-1.238109	-0.580341	-0.000005
Н	-0.831232	1.187728	0.913478
Н	-0.831257	1.187754	-0.913445
Н	0.579516	0.442446	-0.000009
0	1.783951	-0.061528	-0.000009
Н	1.536377	-1.003420	0.000063

CH ₃ F			
Atom	Х	Y	Z
С	0.000000	0.635921	0.000000
F	0.000000	-0.752642	0.000000
Н	-1.033313	0.986083	0.000000
Н	0.516656	0.986084	0.894876
Н	0.516656	0.986084	-0.894876

 Table S4:
 Cartesian Coordinates (in angstroms) of the Reactant Geometry Calculated at MP2/6-311+G** level

OH

011			
Atom	Х	Y	Z
0	0.000000	0.000000	0.107612
Н	0.000000	0.000000	-0.860893

CH ₂ F			
Atom	Х	Y	Z
С	-0.030818	0.659121	0.000000
F	-0.030818	-0.684309	0.000000
Н	0.231133	1.102029	0.950937
Н	0.231123	1.102029	-0.950937

 Table S5: Cartesian Coordinates (in angstroms) of the Product Geometry Calculated at

 MP2/6-311+G** level

H₂O

Atom	Х	Y	Ζ
Н	0.000000	0.752977	-0.475738
0	0.000000	0.000000	0.118935
Н	0.000000	-0.752977	-0.475738

 Table S6:
 Cartesian Coordinates (in angstroms) of the Transition State Geometry Calculated at MP2/6-311+G** level

Atom	Х	Y	Ζ
С	-0.601311	0.639845	0.000035
F	-1.240880	-0.574785	-0.000036
Н	-0.829769	1.187934	0.913678
Н	-0.829941	1.188136	-0.913444
Н	0.573241	0.439193	-0.000068
0	1.792000	-0.061083	-0.000059
Н	1.526260	-0.992599	0.000420

CH ₃ F	ОН	CH ₂ F	H ₂ O	TS
3260.3	3824.5	3414.2	4013.7	3812.1
3260.3		3249.8	3867.0	3298.4
3144.1		1516.3	1623.2	3816.9
1550.9		1201.2		1540.2
1550.9		1163.0		1513.3
1525.1		764.9		1330.8
1213.4				1272.4
1213.4				1195.7
1056.6				1095.0
				862.4
				728.7
				319.8
				118.4
				2124.0 <i>i</i>

 Table S7: Calculated Stationary-Point Vibrational Frequencies (in cm⁻¹) of R1 at MP2/6-31+G** Level.

CD ₃ F	ОН	CD ₂ F	HDO	TS
2422.5	3824.5	2555.0	3944.6	3811.9
2422.5		2340.7	2860.3	2456.9
2248.1		1211.8	1423.0	2306.9
1174.5		1043.2		1193.4
1126.9		917.9		1123.6
1126.9		600.7		1050.6
1001.8				989.7
926.3				954.7
926.3				922.3
				788.6
				689.6
				238.8
				134.1
				115.0
				1561.7 <i>i</i>

 Table S8: Calculated Stationary-Point Vibrational Frequencies (in cm⁻¹) of R2 at MP2/6-31+G** Level.

T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	6.42(-14) ^c	1.23(-15)	1.71(-15)	1.52(-15)	1.71(-15)
	1.23(-13) ^d	2.18(-15)	2.56(-15)	2.37(-15)	2.56(-15)
250	1.32(-13)	5.60(-15)	6.82(-15)	6.40(-15)	6.82(-15)
	2.21(-13)	8.87(-15).	9.65(-15)	9.26(-15)	9.65(-15)
300	2.23(-13)	1.61(-14)	1.83(-14)	1.76(-14)	1.83(-14)
	3.44(-13)	2.36(-14)	2.48(-14)	2.41(-14)	2.48(-14)
350	3.40(-13)	3.54(-14)	3.89(-14)	3.77(-14)	3.89(-14)
	4.93(-13)	4.92(-14)	5.07(-14)	4.97(-14)	5.07(-14)
400	4.85(-13)	6.58(-14)	7.06(-14)	6.90(-14)	7.06(-14)
	6.70(-13)	8.80(-14)	8.95(-14)	8.82(-14)	8.95(-14)
450	6.59(-13)	1.09(-13)	1.15(-13)	1.13(-13)	1.15(-13)
	8.79(-13)	1.42(-13)	1.43(-13)	1.41(-13)	1.43(-13)
500	8.66(-13)	1.68(-13)	1.75(-13)	1.72(-13)	1.75(-13)
	1.12(-12)	2.12(-13)	2.13(-13)	2.11(-13)	2.13(-13)
600	1.39(-12)	3.34(-13)	3.43(-13)	3.40(-13)	3.43(-13)
	1.73(-12)	4.06(-13)	4.05(-13)	4.02(-13)	4.05(-13)
800	2.99(-12)	8.97(-13)	9.05(-13)	9.00(-13)	9.05(-13)
	3.51(-12)	1.04(-12)	1.03(-12)	1.02(-12)	1.03(-12)
1000	5.46(-12)	1.81(-12)	1.82(-12)	1.81(-12)	1.82(-12)
	6.22(-12)	2.04(-12)	2.01(-12)	2.01(-12)	2.01(-12)

Table S9: Calculated Dual-Level Rate Constants in cm³ molecule⁻¹ s⁻¹ of R1 Using
MP2/6-31+G** as the Low-Level Theory.

^afrom DeMore's Arrehenius expression.¹¹

^bfrom Schmolter et al.'s Arrehenius expression.⁹

 $^{c}6.42(-14)$ means 6.42×10^{-14} .

^dUpper values are results fitted to experimental rate constants of Ref. 11 at 350K, and the lower values are results fitted to experimental rate constants of Ref. 9 at 250K. See text.

	IVII 2/0-31 + O	as the Low-Lo	ever meory.		
T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	2.38(-15)	5.33(-17)	1.52(-16)	1.09(-16)	1.52(-16)
250	9.43(-15)	4.54(-16)	8.76(-16)	7.10(-16)	8.76(-16)
300	2.48(-14)	1.98(-15)	3.11(-15)	2.69(-15)	3.11(-15)
350	5.17(-14)	5.86(-15)	8.16(-15)	7.33(-15)	8.16(-15)
400	9.32(-14)	1.36(-14)	1.75(-14)	1.62(-14)	1.75(-14)
450	1.52(-13)	2.70(-14)	3.29(-14)	3.08(-14)	3.29(-14)
500	2.32(-13)	4.75(-14)	5.57(-14)	5.29(-14)	5.57(-14)
600	4.64(-13)	1.17(-13)	1.30(-13)	1.25(-13)	1.30(-13)
800	1.31(-12)	4.06(-13)	4.31(-13)	4.22(-13)	4.31(-13)
1000	2.82(-12)	9.61(-13)	9.96(-13)	9.82(-13)	9.96(-13)

Table S10: Calculated Dual-Level Rate Constants in cm³ molecule⁻¹ s⁻¹ of R1 UsingMP2/6-31+G** as the Low-Level Theory.^a

^aUsing 4.37 (kcal/mol) as the high-level classical barrier height.

T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	3.35(-15) ^a	6.58(-16)	9.64(-16)	8.22(-16)	9.64(-16)
	6.42(-15) ^b	1.23(-15)	1.66(-15)	1.44(-15)	1.66(-15)
250	1.21(-14)	3.29(-15)	4.12(-15)	3.78(-15)	4.12(-15)
	2.047(-14)	5.42(-15)	6.47(-15)	6.00(-15)	6.47(-15)
300	3.02(-14)	1.00(-14)	1.17(-14)	1.11(-14)	1.17(-14)
	4.65(-14)	1.53(-14)	1.71(-14)	1.63(-14)	1.71(-14)
350	6.07(-14)	2.32(-14)	2.58(-14)	2.48(-14)	2.58(-14)
	8.80(-14)	3.32(-14)	3.60(-14)	3.48(-14)	3.60(-14)
400	1.07(-13)	4.48(-14)	4.85(-14)	4.71(-14)	4.85(-14)
	1.48(-13)	6.12(-14)	6.51(-14)	6.35(-14)	6.51(-14)
450	1.71(-13)	7.66(-14)	8.15(-14)	7.97(-14)	8.15(-14)
	2.29(-13)	1.01(-13)	1.06(-13)	1.04(-13)	1.06(-13)
500	2.57(-13)	1.20(-13)	1.26(-13)	1.24(-13)	1.26(-13)
	3.34(-13)	1.55(-13)	1.60(-13)	1.58(-13)	1.60(-13)
600	5.06(-13)	2.50(-13)	2.57(-13)	2.54(-13)	2.57(-13)
	6.28(-13)	3.08(-13)	3.15(-13)	3.11(-13)	3.15(-13)
800	1.39(-12)	7.08(-13)	7.18(-13)	7.13(-13)	7.18(-13)
	1.63(-12)	8.29(-13)	8.36(-13)	8.31(-13)	8.36(-13)
1000	2.91(-12)	1.49(-12)	1.50(-12)	1.49(-12)	1.50(-12)
	3.32(-12)	1.69(-12)	1.69(-12)	1.69(-12)	1.69(-12)

Table S11:Calculated Dual-Level Rate Constants in cm^3 molecule⁻¹ s⁻¹ of R2 UsingMP2/6-31+G** as the Low-Level Theory.

a7.61(-17) means 7.61×10^{-17} , classical barrier height used is 3.06 kcal/mol.

^bClassical barrier height used is 2.80 kcal/mol.

	11110 000 0110				
T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	1.42(-15)	5.10(-17)	6.81(-15)	6.72(-15)	7.83(-15)
250	6.24(-15)	4.64(-16)	1.23(-14)	1.06(-14)	1.33(-14)
300	1.76(-14)	2.11(-15)	2.21(-14)	1.79(-14)	2.31(-14)
350	3.85(-14)	6.48(-15)	3.79(-14)	3.01(-14)	3.89(-14)
400	7.20(-14)	1.55(-14)	6.12(-14)	4.89(-14)	6.23(-14)
450	1.21(-13)	3.11(-14)	9.38(-14)	7.61(-14)	9.49(-14)
500	1.89(-13)	5.56(-14)	1.37(-13)	1.13(-13)	1.38(-13)
600	3.91(-13)	1.39(-13)	2.62(-13)	2.25(-13)	2.63(-13)
800	1.15(-12)	4.90(-13)	6.98(-13)	6.33(-13)	6.99(-13)
1000	2.55(-12)	1.16(-12)	1.44(-12)	1.35(-12)	1.44(-12)

Table S12: Calculated Dual-Level Rate Constants^a in cm³ molecule⁻¹ s⁻¹ of R1 UsingPM3 as the Low-Level Theory.

^aThe results are fitted to experimental rate constants at 350 K, See text.

Table S13:	Calculated Dual-Level Rate Constants ^a in cm ³ molecule ⁻¹ s ⁻¹ of R2
	Using PM3 as the Low-Level Theory.

T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	7.40(-17)	5.29(-17)	1.38(-15)	9.07(-16)	1.39(-15)
250	5.73(-16)	4.40(-16)	3.25(-15)	2.05(-15)	3.26(-15)
300	2.37(-15)	1.90(-15)	7.28(-15)	4.81(-15)	7.28(-15)
350	6.87(-15)	5.65(-15)	1.48(-14)	1.05(-14)	1.48(-14)
400	1.59(-14)	1.33(-14)	2.74(-14)	2.06(-14)	2.74(-14)
450	3.14(-14)	2.66(-14)	4.68(-14)	3.70(-14)	4.68(-14)
500	5.60(-14)	4.76(-14)	7.49(-14)	6.17(-14)	7.49(-14)
600	1.42(-13)	1.21(-13)	1.65(-13)	1.44(-13)	1.65(-13)
800	5.34(-13)	4.52(-13)	5.34(-13)	4.93(-13)	5.34(-13)
1000	1.36(-12)	1.12(-12)	1.22(-12)	1.16(-12)	1.22(-12)

^aClassical barrier height used is 4.58 kcal/mol, same as in Table S11.

	Single Leve	1			
T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	1.58(-21)	7.83(-23)	2.49(-20)	2.66(-20)	3.43(-20)
250	1.03(-19)	9.30(-21)	3.41(-19)	2.59(-19)	3.84(-19)
300	1.74(-18)	2.35(-19)	2.90(-18)	1.88(-18)	3.03(-18)
350	1.38(-17)	2.44(-18)	1.58(-17)	1.01(-17)	1.61(-17)
400	6.73(-17)	1.45(-17)	6.20(-17)	4.11(-17)	6.26(-17)
450	2.39(-16)	5.97(-17)	1.91(-16)	1.32(-16)	1.92(-16)
500	6.76(-16)	1.89(-16)	4.89(-16)	3.55(-16)	4.90(-16)
600	3.44(-15)	1.12(-15)	2.18(-15)	1.71(-15)	2.19(-15)
800	3.11(-14)	1.17(-14)	1.72(-14)	1.47(-14)	1.72(-14)
1000	1.35(-13)	5.36(-14)	6.87(-14)	6.21(-14)	6.87(-14)

Table S14: Calculated Rate Constants in cm³ molecule⁻¹ s⁻¹ of R1 at MP2/6-31+G** Single Level

Table S15: Calculated Rate Constants in cm³ molecule⁻¹ s⁻¹ of R2 at MP2/6-31+G** Single Level

T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	7.51(-23)	4.28(-23)	4.12(-21)	1.77(-21)	4.28(-21)
250	8.76(-21)	5.53(-21)	6.97(-20)	3.91(-20)	7.10(-20)
300	2.21(-19)	1.48(-19)	8.02(-19)	4.70(-19)	8.07(-19)
350	2.32(-18)	1.61(-18)	5.44(-18)	3.44(-18)	5.45(-18)
400	1.41(-17)	9.91(-18)	2.50(-17)	1.70(-17)	2.50(-17)
450	5.95(-17)	4.19(-17)	8.67(-17)	6.30(-17)	8.68(-17)
500	1.93(-16)	1.36(-16)	2.44(-16)	1.87(-16)	2.45(-16)
600	1.21(-15)	8.38(-16)	1.26(-15)	1.04(-15)	1.26(-15)
800	1.41(-14)	9.33(-15)	1.17(-14)	1.05(-14)	1.17(-14)
1000	7.07(-14)	4.47(-14)	5.17(-14)	4.80(-14)	5.17(-14)

T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	9.62(-19)	4.79(-19)	7.60(-16)	1.23(-15)	1.33(-15)
250	1.95(-17)	1.16(-17)	1.40(-15)	1.87(-15)	2.08(-15)
300	1.54(-16)	1.02(-16)	2.79(-15)	3.03(-15)	3.59(-15)
350	7.11(-16)	5.01(-16)	5.55(-15)	5.15(-15)	6.48(-15)
400	2.34(-15)	1.71(-15)	1.06(-14)	8.95(-15)	1.17(-14)
450	6.15(-15)	4.57(-15)	1.90(-14)	1.54(-14)	2.03(-14)
500	1.37(-14)	1.03(-14)	3.23(-14)	2.59(-14)	3.37(-14)
600	4.92(-14)	3.64(-14)	7.99(-14)	6.53(-14)	8.16(-14)
800	2.92(-13)	2.02(-13)	3.12(-13)	2.71(-13)	3.15(-13)
1000	9.89(-13)	6.35(-13)	8.36(-13)	7.56(-13)	8.39(-13)

Table S16: Calculated Rate Constants in cm³ molecule⁻¹ s⁻¹ of R1 at PM3 Single Level

Table S17: Calculated Rate Constants in cm³ molecule⁻¹ s⁻¹ of R2 at PM3 Single Level

T(K)	TST	CVT	CVT/SCT	CVT/LCT	CVT/µOMT
200	3.32(-20)	2.87(-20)	4.97(-17)	6.78(-17)	7.56(-17)
250	1.31(-18)	1.16(-18)	1.29(-16)	1.17(-16)	1.58(-16)
300	1.62(-17)	1.45(-17)	3.56(-16)	2.41(-16)	3.90(-16)
350	1.04(-16)	9.33(-17)	9.35(-16)	5.65(-16)	9.74(-16)
400	4.36(-16)	3.94(-16)	2.24(-15)	1.35(-15)	2.28(-15)
450	1.39(-15)	1.25(-15)	4.86(-15)	3.07(-15)	4.91(-15)
500	3.61(-15)	3.26(-15)	9.66(-15)	6.45(-15)	9.72(-15)
600	1.63(-14)	1.46(-14)	3.06(-14)	2.26(-14)	3.07(-14)
800	1.27(-13)	1.12(-13)	1.66(-13)	1.38(-13)	1.66(-13)
1000	5.04(-13)	4.33(-13)	5.40(-13)	4.80(-13)	5.40(-13)

	s _{1/2}
R1	-1.08
R2	-1.25

Table S18: Estimated $s_{1/2}$ (in bohrs) by Intermediate-Level^a Calculation

^aThe intermediate level is QCISD(T)/6-311+G**//MP2/6-31+G**.

Table S19: Range Parameters L Used in the Dual-Level Calculation	

	R1		R2	
Low Level	SECKART	SIL-2	SECKART	SIL-2
PM3	0.300		0.360	
MP2/6-31+G**		0.569		0.643
$(\Delta V^{\neq} = 2.80)^{a}$				
MP2/6-31+G**		0.575		0.636
$(\Delta V^{\neq} = 3.06)^{a}$				

^aHigh-level classical barrier height used in kcal/mol.