494 J. Chem. Inf. Model2005,45, 494—501

A Statistical Model for Predicting Protein Folding Rates from Amino Acid Sequence
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Prediction of protein folding rates from amino acid sequences is one of the most important challenges in
molecular biology. In this work, | have related the protein folding rates with physical-chemical, energetic
and conformational properties of amino acid residues. | found that the classification of proteins into different
structural classes shows an excellent correlation between amino acid properties and folding rates of two-
and three-state proteins, indicating the importance of native state topology in determining the protein folding
rates. | have formulated a simple linear regression model for predicting the protein folding rates from amino
acid sequences along with structural class information and obtained an excellent agreement between predicted
and experimentally observed folding rates of proteins; the correlation coefficients are 0.99, 0.96 and 0.95,
respectively, for alle, all-3 and mixed class proteins. This is the first available method, which is capable

of predicting the protein folding rates just from the amino acid sequence with the aid of generic amino acid
properties and structural class information.

INTRODUCTION important roles in determining the folding rate. Further,
neural networks based models have been developed to relate
folding rates of proteins from the combination of topological
parameters, contact order, long-range order and total contact
distance!® Recently, the role of chain length, native state
geometry and the topological properties of protein conforma-

an advance to this problem, Plaxco ef glroposed the tion for determining the protein folding rates have been
concept of contact order (CO) using the information about reportedti-13 9 P g

_the average sequence separation of all pontactmg residues Currently, all the available methods for predicting the
in the native state of two-state proteins and found a . .
Lo X . . folding rates of two- and three-state proteins are based on
significant correlation between CO and protein folding rates. . . .
) ; . . their three-dimensional structures, and no method has been
Gromiha and Selvardgmphasized the importance of long- - . . )
- . proposed for predicting the folding rates from amino acid
range contacts for determining the folding rates of two-state o
sequence, so far. Hence, it is necessary to develop a model

proteins and defined a novel parameter, long-range order C ) ; ; ! )
for predicting the protein folding rates from their amino acid

(LRO) from the knowledge of long-range contacts (contact . e
sequences, which could serve as a useful tool for predicting

between tWC.’ reS|duQs that are close in space and far n thethe folding rates of proteins with unknown structure. The
sequence) in protein structure. Accordingly, theoretical folding of a protein is mainly dictated by interresidue

2}0?\?05_;2\{: k:)?g?ei%r:pgzggdfogr?relg;f;_?gntg: fgl)dr:?%?étr:tesinteractions, which are influenced by physical, chemical,

) L - energetic and conformational properties of amino acid

Recently, thermodynamic and kinetic experiments demon- ~_ . . . .
. residues. In this work, | have related various amino acid
strated that long-range order is one of the best parameters

that correlates with protein-refolding rates including circular properties with folding rates of two- and three-state proteins.

ermutations of ribosomal proteins S6 frafhermus ther- | found that the classification of proteins into different
pmophilu &6 P structural classes shows a good correlation between amino

. . acid properties and protein folding rates. | have set up linear
Debe aqd Godda?djave pred!cted the.foldmg rates for regression models using amino acid properties for predicting
21 small, single-domain, topologically distinct proteins based

. 0~ ) ) the folding rates of proteins from the amino acid sequence
on the f|_rst p“r_‘C'P'es of protein folding and obser\_/ed a good along with structural class information. | found an excellent
correlation with experimentally observed folding rates. agreement between experimental and predicted protein
Munoz gnd Eatohhave proposed an elgmentgry stafistical folding rates, and the correlation coefficients are 0.97 and
mechanical model to calculate the protein folding rates from 0.93, with back-check prediction and jack-knife test, respec-
their three-dimensional structures. Dinner and Karplus ti\./el)’/ '
performed a statistical analysis to predict the protein folding '
rates and reported that both contact order and stability play MATERIALS AND METHODS

* Corresponding author phonet+81-3-3599-8046; fax:+81-3-3599- Experimental Folding Rates.The expe_rimental f_olding
8081; e-mail: michael-gromiha@aist.go.jp. rates of 32 two- and three-state proteins used in related

Predicting the three-dimensional structure of a protein from
its amino acid sequence is a challenging problem. A related
interesting and important task is to understand the relation-
ship between sequences and folding rates of proteiss.
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Table 1. Predicted Folding Rates in a Set of 32 Two- and Table 2. Numerical Values of 20 Amino Acid Residues for Six
Three-State Proteifs Selected Properties
PDB property Inks) property
code a K° Pg Ra AASA AGnp pred expt. ref residue  ac KO Ps Ra AASA  AGho

All- o Proteins Ala 144 -2550 0.83 370 7090 -—0.58
lmb  0.354 8.45 8.50 (45) Asp 213 -3312 054 260 69.60 —6.10
2abd  0.402 6.85 6.55 (46) Cys 076 -3282 119 3.03 11430 -1091
limg  0.398 6.98 7.31 (47) Glu 201 -3617 037 330 8050 -7.37
Zﬁdd 0.313 9.80 9.80 (48) Phe 101 -3454 138 6.60 14840 —1.35
1hrc 82421(1) 3-88 g-gg (43) Gly 062 -2700 075 313 4400 -0.82
lyce 0. 57 9.62 (30) His 056 -31.84 087 357 107.90 -557

All- 3 Proteins lle 0.68 —31.78 160 7.69 14270 0.40
1nyf 0.392 0.473 0.352 0.422 3.18 4.54 (14) Lys 059 -—3240 074 1.79 87.50 —5.97
1pks 0.386 0.442 0.325 0.406 —1.39 -1.05 (51) Leu 058 —31.78 1.30 588 129.80 0.35
1shg 0.383 0.481 0.342 0.442 1.72 1.41 (38) Met 0.73 —31.18 1.05 5.21 14790 —-0.71
1srl 0.403 0.489 0.325 0.415 3.68 4.04 (52) Asn 0.93 —30.90 0.89 2.12 74.00 —6.63
1fnf_9 0.466 0.479 0.345 0.410 —0.81 -0.91 (53) Pro 219 —2325 055 212 73.50 056
1fnf_10 0.485 0.503 0.335 0.381 4.67 5.48 (54) GIn 1.20 —32.60 1.10 2.70 93.30 -7.12
lhng 0.418 0.479 0.358 0.420 2.79 2.89 (54) Arg 039 —-2662 093 253 116.00 —12.78
1ten 0.398 0.455 0.331 0.395 1.72 1.06 (55) Ser 0.81 —29.88 0.75 2.43 62.80 —6.18
1tit 0.392 0.457 0.381 0.416 3.70 3.47 (54) Thr 1.25 ~31.23 1.19 2.60 7800 —3.66
1wit 0.441 0.458 0.358 0.392 1.27 0.41 (54) val 063 -3062 170 714 11560 0.18
lcsp 0.382 0.450 0.392 0.394 7.22 6.98 (56) Trp 140 -3024 137 625 16780 —4.71
1mjc 0.431 0.457 0.346 0.366 4.47 5.24 (57) Tyr 072 -3501 147 303 14590 845
2ait 0.438 0.502 0.322 0.394 554 4.20 (58) : : : i : :

Mixed-Class Proteins
laps 0.421 0.328 0.403 0.6320.84 -1.48 (59) study along with their brief descriptions have been explained
izﬂ? 8-2&’2 8-322 8-232 8-;% 33; g;g ((gi’)) in our earlier article§ 8 and are available on the Web at
2hgi 0452 0.333 0.368 0.729-028 0.18 (62) http://wva.cbrc.Jp/vgrpm|ha/_fold_ra_te/property.html.T_hese
1pba 0.343 0.381 0.432 0642 7.11 6.80 (63) Properties were obtained either directly from experiments
lubo 0.394 0.354 0420 0.678 6.00 7.33 (64) or by computational methods using three-dimensional struc-
2ptl 0.368 0285 0.355 0659 4.61 4.10 (65) {,res of proteins
1fkb 0.442 0.347 0.407 0.696 1.63 1.46 (14) . ‘ . .
1coa 0.414 0423 0454 0708 4.92 3.87 (66) Computational Procedure. The average amino acid
1div 0.403 0.334 0.396 0.713 6.90 6.58 (67) property for each proteirR,.{i) was computed using the
2vik 0.399 0.331 0.417 0.660 553 6.80 (14) standard formula
1cis 0.417 0.383 0.436 0.676 2.95 3.87 (14)
1pca 0.395 0.411 0.457 0.682 599 6.80 (14) N
2q.: Power to be at the C-terminal ofhelix;'":?6 K% Compress- Padl) = ZP(J)/N (1)
=

ibility; 3° Pg: S-strand tendenc:?® R.: Reduction in solvent acces-
sibility;3* AASA Solvent accessible surface area for protein unfoléing;
AGnp: Gibbs free energy change of hydration for denatured prétein; where P(j) is the property value ofj residue and the

acid residues for these six properties are given in Table 2. The regressio . .
equations are as follows: @l-a. proteins In(k) = —33.191 { 0.482) rbrotem. These property values have been obtained from the

0 + 20.195 & 0.190); (ii)all-f proteins In(k) = —81.48 & 1.687) table of 20 amino acid residues (e.g. Table 2), and no
KO + 163.08 @ 1.484)P; + 79.92 @ 2.091)R, — 134.99 ¢ 1.781) structural information of a specific protein is required for
AASA— 13.18 (£ 0.709); (iii) mixed class proteinsin(k) = —102.60 computation. The computed property valRgdi) for each

(£ 2.06)K® — 90.33 (= 2.32)Ra + 131.80 (= 1.95)AASA+ 90.82 (|55 of proteins was related with experimental folding rate
(& 1.23) AGrp — 38.53 (- 0.83). Inke(i) using single correlation coefficient. Further, | have
combined the amino acid properties using multiple regression
techniqué® The statistical significance of the results obtained
in the present study has been verified witest andp-value

by standard procedures.

works**14form the basis for the present study. The Protein
Data Bank codé8 and experimental Iik{) values are given

in Table 1. The structural classification of these proteins
yielded six alle,, 13 all3 and 13 mixed class proteins.
Further, | have validated the present method using a set of
other 17 two- and three-state proteins.

Amino Acid Properties. | used a set of 49 diverse amino Role of Protein Structural ClassesIn our earlier work,
acid properties (physical-chemical, energetic and conforma-we have analyzed the influence of interresidue interactions
tional), which fall into various clusters analyzed by Tommi in different structural classes, and we found that the
and Kanehis® in the present study. The amino acid interacting pattern is distinct in each structural cBss.
properties were normalized between O and 1 using the Further, the analysis on the predictive accuracy of several

RESULTS AND DISCUSSION

expressionPnom(i) = [P() — Pmin}/[ Pmax — Pmin], WhereP(i), secondary structure prediction algorithms indicates the
Prorm(i) @re, respectively, the original and normalized values necessity of structural classification for better perfor-
of amino acid i for a particular property, amthin and Prax mance?t?20n the other hand, several methods are available

are, respectively, the minimum and maximum values. The to predict the protein structural class with high accuricy.
numerical values of 20 amino acid residues for six selected The relationship between LRO and protein folding rates
properties are presented in Table 2. Further, the numericalshows that the classification of proteins into three structural
and normalized values for all the 49 properties used in this classes significantly improved the correlatfohhave also
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reported that the single data set with the inclusion of proteins Table 3. Validity Test for Predicting the Folding Rates of 17

from all structural classes yielded a poor correlatipn £ Proteins
0.39) between amino acid properties and protein folding In(ks)
rates? In thg present study, | found that the classification PDB code pred expt. ref.
of proteins into alle,, all-3 and mixed class remarkably :
. All- o Proteins
enhanced the correlation from 0.39 to 0.97, and hence the 1CEI 6.19 58 (47)
structural classification is necessary for successful prediction 1ENH 9.44 10.53 (68)
of protein folding rates. This result reveals that the classi- 1EBD 9.87 9.68 (48)
fication includes the information about the topology of All- 8 Proteins
protein, which is found to be an important determinant for igué _32-1961 _14120 (?61%)
. . s . .

protein foIdmg_ rates _ _ _ _ 1C90 10.01 720 (70)

All-o. Proteins. The relationship between amino acid 1G6P 5.32 6.30 (70)
properties and protein folding rates of allproteins shows 1LOP 5.65 6.60 (71)
that the property power to be at the C-terminaloshelix Mixed Proteins
(abbreviated as.;)*”?® has the highest negative correlation 1HZ6 5.09 4.10 (72)
with protein folding ratesr(= —0.99). Further, the thermo- %(FSIGZB Z-é;‘ 2-88 ((;43))
dynam|<_: and conformaﬂ_onal properties s_how S|gn|f_|cant 1AVE 746 6.80 (63)
correlation (0.6 to 0.9) with Ik§) values. This observation 1POH 3.17 2.70 (60)
reveals that the formation of local secondary structures 1AON 1.47 0.80 (75)
enhances the folding rates of proteins and hence the folding ;Eé\"\'ﬂ é-gg 2?8 ((;%)
process is the interplay between the local conformational 1UBQ 6.00 590 (78)

preferences and long-range cont&t3he all-o. proteins

have h|gher f0|d|ng rates thaﬂ other ClaS§eS of proteins,-ina new term, “helix parameter”, for predicting the protein
general, and hence the folding rates of this class of proteinsfo|ding rates and reported that it has the correlation of 0.927
may be well explained with single amino acid property. In with protein folding rate. The present model predicts the
contrast, when | generated 49 sets of random numbers andyrotein folding rates of aléx proteins at the highest accuracy
computed the correlation coefficients, | have obtained the of r = 0.99 and 0.96, respectively, with back-check predic-
averaga-value of 0.34+ 0.23. This verifies that one could  tion and jack-knife test. These correlation coefficients
clearly discriminate between amino acid properties and gemonstrate the better performance of the present method
random numbers and emphasizes the validity of selectingcompared to other methods in the literature.
ami_no acid properties for understanding/predicting protein  All-g Proteins. In all-3 proteins, the thermodynamic
folding rates. properties show significant correlation with protein folding
I have developed a simple regression model for predicting rates, and the highest single property correlation @696
the folding rates of aléx proteins using amino acid properties  yith unfolding entropy chang®.Similar calculations with
and the regression equation is random numbers yielded the average correlation of 820
0.16. As the single property with the highestalue is not
In(k;) = —33.191 (£ 0.482)a, +20.195 ¢ 0.190) (2)  sufficient for accurate prediction | have combined different
amino acid properties with a multiple regression fit. The
wherea. is the power to be at the C-terminal ofhelix. computation has been carried out with the combinations of
The numerical values af. and folding rates for the sixadl-  two to five amino acid properties, and | found that the
proteins are presented in Table 1. | observed an excellentcombination of four properties substantially improved the
agreement between the predicted folding rates and experi-correlation. The corresponding regression equation is
mental observations. The correlation coefficient is 0.988
and average deviation is 0.142. Further, | have verified that In(k;) = —81.48 1.687)K° + 163.08 ¢ 1.484)P; +

the results are statistically significartt<€ 12.09 andp < 79.92 @ 2.091)R, — 134.99 ¢ 1.781)AASA—
2.68e-4). 13.18 (- 0.709) (3)

| have also performed the jack-knife test by determining ' '
the coefficients of the regression equation using (n-1) datawhere K Pg, R, and AASAare, respectively, compress-
(i.e., omitting one protein at a time) and then computing the ibility, 3 S-strand tendenc3f, reduction in solvent accessibil-
folding rate of the omitted protein. | found that all the ity3! and solvent accessible surface area for protein unfold-
considered proteins agreed extremely well with experiment. ing.2® This result shows that the combination of physical,
The r-value is 0.958 (= 6.685;p < 2.69e-3), and the  thermodynamic and conformational properties of amino acid
average deviation is 0.21. The cross-validation has also beerresidues enhances the folding rates offalroteins. Ex-
performed with the complete data set of nine caltlass perimental observations support my findings that the local
proteins (listed in Tables 1 and 3), and | obtained the secondary structure and conformational parameters influence
correlation of 0.947 t(= 7.735;p < 1.16e-3) between the folding rates of proteid$3?and thermodynamic param-
experimental and predicted folding rates. TRevalue is eters play an important role for determining the folding
0.895, and the average deviation is 0.39. transition state structures of proteffig he inclusion of other

Zhou and Zhotiused four alle. proteins and obtained the  properties may improve the correlation, but it will cause over
correlation of 0.92 between experimental and predicted fitting of the parameters. On the other hand, the combination
folding rates. The-values obtained with CO and LRO are, of four properties could predict the folding rates of two- and
respectively, 0.56 and 0.72. Recently, Shao ét ptoposed three-state proteins at high accuracy.
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25 tact$*3°has the highest positive correlatian= 0.68) with

¥ ] protein folding rates. This might be due to the fact that the
. short- and medium-range interactions may predominate and
] initiate protein folding with the formation af-helices®® On
. the other hand, a set of random numbers yielded the average
] correlation of 0.274 0.20.
3 | have analyzed the variation of correlation coefficients
] due to the combination of several amino acid properties by
] using multiple regression technique. The correlation coef-
_ ] ficient obtained with single property is 0.68 and it raised to
0less L N 0.79, 0.88, 0.95 and 0.95, respectively, with the combination
0 02 04 06 03 ! of 2 to 5 properties. | observed that the combination of four
Correlation coefficient properties significantly improved the correlation, and hence
W] | have used the regression equation derived with four amino

] acid properties for predicting the folding rates of mixed class

proteins. The regression equation is

20 F
15

10 F

Frequency of combinations

In(k) = —102.60 ¢ 2.06)K° — 90.33 ¢ 2.32)R, +
] 131.80 (£ 1.95)AASA+ 90.82 &= 1.23)AG,, —
] 38.53 (£ 0.83) (4)

Frequency of combinations
S
T

[ ] where AGyp is the Gibbs free energy change of hydration

ST o e os for denatured proteif?. Interestingly, the three properties,

Correlation coefficient K% R, and AASA, are also important for determining the

Figure 1. Frequency of the combinations of four amino acid folding rates of allg proteins. The combination of free energy
properties at different ranges of correlation coefficients. (apall-  with other thermodynamic and physical properties influences
proteins. (b) mixed class proteins. the fast folding rates of two- and three-state proteins.

. . ) Previously, it has been shown that the combination of free
| have analyzed the correlation coefficients obtained for a energy and contact order determines the folding fates.
different combination of four amino acid properties, and the  The analysis on the variation of correlation coefficients
frequency of combinations at different ranges of correlation 4 giterent combinations of amino acid properties revealed
coefficients are shown in Figure 1a. From this figure, | 4t most of the combinations yielded the correlation in the
noticed that most of the combinations have the correlation range of 0.5 to 0.8, as observed in Alproteins (Figure

in the range of 0.5 to 0.8, and only two combinations have 1b). The combination of the propertig€?, R, AASAand
the correlation higher than 0.95. | have selected the propertiesAGhD’ has the highest correlation. The numerical values for

that y'ielded'the highest correlation coefficient for predicting ) the properties and predicted k)(values are presented
protein folding rates. in Table 1. | found an excellent correlation of 0.95 between
The numerical values of the parametei, Ps, R,and  experimental and predicted protein folding rates. Further, |
AASA for the considered alf proteins along with their  have corroborated the statistical significance of the results
predicted and experimental kg) values are given in Table  (p < 3.02e-5 and = 10.3).
1. I'found that the predicted protein folding rates have avery — Recent studies on protein folding rates showed that the
good agreement with experimental observations and the|n ) values of mixed class proteins have been predicted with
correlation between them is 0.956. The calculgtedhlue  high accuracy. The correlation coefficient obtained with CO,
is < 2.58e-5 and = 10.86. | have also carried out the jack- | RO and TCD are, respectively, 0.82, 0.86 and 0.92. The
knife test, and the correlation obtained with this method is present method predicted the folding rates of two-state
0.890 R = 0.799;p < 1.85e-4 and = 6.616). proteins with the highest accuracy, and the correlation
Zhou and Zhofi used a set of 13 aff proteins and  coefficient is 0.95. | have also performed a jack-knife test
reported that the correlation between predicted protein folding and obtained the-value of 0.87 R2 = 0.749;p < 3.9e-4;t
rates using total contact distance and experimental data is= 5.729). The standard errors obtained for fitting the data
0.69. With the same data set, the present method predictedare also included in Eqn. 4, which is less than 3%. Further,
the folding rate of two-state proteins with the remarkable | have estimated the deviation of ki values, and the
correlation of 0.956. The deviation of ki) values obtained  average deviation obtained for back-check prediction and
with total contact distance is 1.372, whereas the presentjack-knife test are, respectively, 0.737 and 1.253.
method predicted the folding rate within the deviation of  Prediction of Protein Folding Rates.| have used three
0.575. Further, the standard error of each coefficient in Eqn. different equations (Eqns.—2) for predicting the folding
3 is less than 5%. These results emphasize that the presenfates of proteins belonging to each structural class. The
method could be used for predicting the folding rates of results obtained with back-check prediction are presented in
unknown protein. Table 1. | found an excellent correlation of 0.97 between
Mixed Class Proteins.The relationship between amino predicted and experimental protein folding rates for the
acid properties and protein folding rates in a set of 13 mixed sample set of 32 proteins as seen in Figure 2a. thiest
class proteins shows that the average medium-range conand p-values are, respectively, 23.54 ard2.98e-13, and




498 J. Chem. Inf. Model., Vol. 45, No. 2, 2005 GROMIHA

12

T LA B R B B B 3_""I""I""I""I""
[r=0.97 1 -
I — 2F -
s 8F . g
5 T - 8 .
g e  * g [ U o 3
= 5 F L)
g 4 %Y - S
> >
= HooL . ]
vy & [
.:5 0+ o ® - E C
1k -
. r
L J
4 1 1 1 _2 1 1 1 1
4 0 4 8 12 2 -1 0 1 2 3
ln(kf) Computed ln(kf) Predicted
12 et Figure 3. Comparison between experimental and predicted folding
£=0.93 rates in the mutants of SH3 src domain. Experimental data are taken
I ’ from ref 38.
72 8 i XA ] Table 4. Prediction of Protein Folding Rates upon Mutations in
g . * Barnase
2 4 So/ s 1 Aln(k)
i [ 1 mutant experimeft predicted
z ot S 1 D12G —0.01 —0.50
= or ] D12A 0.20 -0.30
ya Y13G -0.48 -1.17
I Q15G -0.18 —-0.44
B N —— Q15A 0.22 -0.37
- 0 4 8 12 Y17G -0.94 -1.17
In(k) Predicted 155G 0.01 -0.79
Figure 2. Relationship between experimental and predictek)in( E%g :8%52; 28;g§
values using multiple regression model in 32 two-state proteins. 188G —1.72 —0.79
(a) back-check prediction. (b) jack-knife test. L89G 0.32 —0.93
L95G —0.75 —0.93
the average deviation is 0.56. | have also performed a jack- '\(9967% :g-gg Rt
knife test to examine the validity of the present method, and T 100G —038 048

the results are shown in Figure 2b. | found that about 60%
of the considered proteins (19 out of 32 proteins) agreed *°Data taken from ref 39.
very well with the experiment and the deviation is less than
one unit. The correlation coefficient between experimental This protein belongs to aff class, and | have calculated
and predicted Irg) values is 0.93t(= 13.8;p < 2.11 e-11), the folding rates using Eqn. 3. The relationship between
and the average deviation is 0.931. experimental and predicted folding rates is shown in Figure
Validating the Present Method. | have calculated the 3, and | observed a good agreement. Thealue is 0.87,
folding rates of other 17 two- and three-state proteins and the average deviation is 0.60.
belonging to different structural classes and compared the Vu et al®® constructed a pseudo wild type of barnase, in
predicted Ink;) values with experimental observations. | have which residue His102 is mutated to Ala. They have measured
presented the list of proteins along with predicted and the folding rates of 15 mutants under the background of
experimental folding rates in Table 3. In allproteins, all pseudo wild-type protein. Barnase belongs to a mixed class
the three proteins are predicted within the deviation of 1.1. protein, and | have calculated the difference of folding rates
The correlation between predicted and experimentd)in(  for each of the 15 mutants with respect to pseudo wild-type
values in allg proteins is 0.95. In mixed proteins, 8 out of protein using Egn. 4 and the results are presented in Table
9 proteins are predicted within the deviation of 1.0. Con- 4. | found that 12 out of 15 mutants are predicted within the
sidering all the 17 proteins together, the correlation coef- deviation of 1.0. This data set contains several mutants with
ficient is 0.94, and the average deviation is 0.96. Recently, the same amino acid replacements at different positions (e.g.,
Scott et aF’ reported the folding rate ofi-spectrin 158 L89G and L95G; Y13G, Y17G and Y97G), and the present
domain for which the three-dimensional structure is not method is not able to distinguish them.
available. | have calculated the folding rate using Eqn. 2  From these results | observed that the positional parameters
and observed a good agreement between predicted angblay an important role in understanding the protein folding
experimental folding rates (within the deviation of 2.0). This rates upon mutations, and the analysis based on the separation
result emphasizes the validity of the present method for of mutants based on secondary structure and solvent acces-
predicting the protein folding rates. sibility may improve the accuracy of prediction as in the
Prediction of Protein Folding Rates upon Mutations.l case of protein mutant stability anBl value analysig® 42
have examined the performance of the present method for Comparison with Other Methods. The protein folding
predicting the protein folding rates upon mutations. Viguera rate predictive ability of eight different methods along with
et al® measured the experimental folding rates of SH3 the results obtained with the present multiple regression
domain of src for the wild-type protein and seven mutants. model are presented in Table 5.
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Table 5. Comparison of Protein Folding Rate Predictive Ability of Eight Other Methods with the Present Method

method parameter information r reference
linear single regression contact order 3D structure 0.74 Plaxcc et al.
first principles approach residueesidue contacts 3D structure 0.78 Debe and Goddard
statistical mechanical model residuessidue contacts 3D structure 0.83 Munoz and Eaton
linear single regression long-range order 3D structure 0.81 Gromiha and Selvaraj
neural network CO and free energy change 3D structure 0.79 Dinner and Karplus
linear single regression total contact distance 3D structure 0.88 Zhou anél Zhou
topomer search model long-range contacts 3D structure 0.89 Makarot?et al.
linear multiple regression secondary structure content 3D structure 0.91 Gorfg et al.
linear multiple regression amino acid properties 1D sequence 0.97 present work

Plaxco et af proposed the concept of contact order and structures. | have systematically analyzed the relationship
related it with protein folding rates. Gromiha and Selvaraj between amino acid properties and protein folding rates in
introduced the parameter, long-range order from the knowl- different structural classes of proteins. | have set up linear
edge of long-range contacts in protein structures for predict- regression models for predicting the folding rates of two-
ing protein folding rates. Zhou and Zhbeombined the and three-state proteins using the combination of amino acid
parameters CO and LRO and formed the term, total contactproperties. The present method is the first one, which can
distance to relate with protein folding rates. The correlation predict the protein folding rates from amino acid sequence
coefficients obtained with CO, LRO and TCD are, respec- along with structural class information. The predicted folding
tively, 0.74, 0.81 and 0.88. Debe and Goddabposed a  rates show an excellent correlation with experimental
method based on first principles approach and reported theobservations; the correlation coefficients are 0.99, 0.96 and
correlation of 0.78 between experimental and predicted 0.95, respectively, for ali, all-3 and mixed class proteins.
folding rates. Munoz and Eatbdeveloped a simple statisti- These accuracy levels are superior to other methods in the
cal model and obtained the correlation of 0.83 between theoryliterature.
and experiment. Dinner and Karpfuombined CO and free
energy change to predict the folding rates of two-state ACKNOWLEDGMENT
proteins and reported the correlation of 0.79. Recently,
Makarov et al'® developed a topomer search model, which
increased the correlation to 0.89. Further, Gong €t al.
propqsed a multiple re.greSSipn model for predicting the Supporting Information Available: Numerical values
protein folding rates with their local secondary structure (Taple 1) and normalized values (Table 2) for and brief
content and reported the correlation coefficient of 0.91. The descriptions (Table 3) of 49 selected physicochemical, energetic
present method shows the correlation of 0.97 and 0.93and conformational properties of the 20 amino acids/residues.
between experimental and predicted folding rates with the This material is available free of charge via the Internet at

. . . http://pubs.acs.org.
back-check and jack-knife tests, respectively. These accuracy
levels are better than other methods in the literature. The
high accuracy attained by the present method may be due to
the following reasons: (i) it revealed the important amino (1) Eaton, W. A.; Munoz, V.; Hagen, S. J.; Jas, G. S.; Lapidus, L. J.;
acid properties for accelerating protein folding rates, (ii) the f';led%y, %nﬁd l:eo;rigiléerr,] JS- Féliztnfci)rlletsifrsu gggorgez%hagi;?rfss ég protein
combination Of properye_s has beer_‘ systematically _SeIECted 2 Plaxc%, K. W Si-mong, )IQ.IT.; Bakér, D. Contact brder, Traﬁsition
for understanding/predicting the folding rates of proteins, and ~ * state Placement and the Refolding Rates of Single Domain Proteins
(iif) the selected properties are reliable in understanding J. Mol. Biol. 1998 277, 985-994.

; ; ; (3) Gromiha, M. M.; Selvaraj, S. Comparison Between Long-range
protein folding rates as demonstrated from experiments. Interactions and Contact Order in Determining the Folding Rate of

Although the direct comparison of correlation coefficients Two-state Proteins: Application of Long-range Order to Folding Rate

obtained in the present work with the other methods is not Prediction.J. Mol. Biol 2001, 310, 27—32.

. L. . . . . (4) Zhou, H.; Zhou, Y. Folding Rate Prediction Using Total Contact
appropriate, the empirical relationships derived for different Distance Biophys. J2002 82, 458463,

structural classes predict the folding rates with greatest (s) makarov, D. E.; Plaxco, K. W. The Topomer Search Model: A Simple,
accuracy. Further, all the other methods use the three- (S?l{agggegi\iez Ttheozr% of Two-state Protein Folding Kineti€sotein

i ; ; ; . ; ci , 17-26.
dlmgnsmnal structure information fQI’ pred.lctlng the protein (6) Miller, E. J.; Fischer, K. F.; Marqusee, S. Experimental Evaluation of
folding rates. The present method is the first available one, Topological Parameters Determining Protein-Folding Rétesc. Natl.
which uses the amino acid sequence (along with structural ~ Acad. Sci. U.S.A2002 99, 10359-10363.
class information) for predicting the folding rates of proteins. (7) Debe, D. A.; Goddard, W. A. 3rd. First principles prediction of protein

Th . | th . f fth folding rates.J. Mol. Biol. 1999 294 619-625.
ese comparisons reveal the superior periormance of the (8) Munoz, V.; Eaton, W. A. A simple model for calculating the kinetics

present method for predicting the folding rates of proteins. of protein folding from three-dimensional structurBsoc. Natl. Acad.
Sci. U.S.A1999 96, 11311-11316.
(9) Dinner, A. R.; Karplus, M. The roles of stability and contact order in
CONCLUSIONS determining protein folding ratedlat. Struct. Biol 2001, 8, 21—-22.
. . . . . (10) Zhang, L.; Li, J.; Jiang, Z.; Zia, A. Folding Rate Prediction on Neural
The interaction of amino acid residues among themselves Network Model.Polymer2003 44, 1751-1756.
and with surrounding medium dictates the structure of a (11) Dokholyan N. V.; Li, L.; Ding, F.; Shakhnovich, E. I. Topological
protein and hence the rate of folding. Interresidue interactions ~ Jeterminants of protein foldingzroc. Natl. Acad. Sci. U.S.2002
are mamly influenced by physwal-chemlcal, energetic and (12) Micheletti, C. Prediction of folding rates and transition-state placement

conformational properties of amino acid residues in protein from native-state geometrfroteins2003 51, 74—84.
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