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Prediction of protein folding rates from amino acid sequences is one of the most important challenges in
molecular biology. In this work, I have related the protein folding rates with physical-chemical, energetic
and conformational properties of amino acid residues. I found that the classification of proteins into different
structural classes shows an excellent correlation between amino acid properties and folding rates of two-
and three-state proteins, indicating the importance of native state topology in determining the protein folding
rates. I have formulated a simple linear regression model for predicting the protein folding rates from amino
acid sequences along with structural class information and obtained an excellent agreement between predicted
and experimentally observed folding rates of proteins; the correlation coefficients are 0.99, 0.96 and 0.95,
respectively, for all-R, all-â and mixed class proteins. This is the first available method, which is capable
of predicting the protein folding rates just from the amino acid sequence with the aid of generic amino acid
properties and structural class information.

INTRODUCTION

Predicting the three-dimensional structure of a protein from
its amino acid sequence is a challenging problem. A related
interesting and important task is to understand the relation-
ship between sequences and folding rates of proteins.1 As
an advance to this problem, Plaxco et al.2 proposed the
concept of contact order (CO) using the information about
the average sequence separation of all contacting residues
in the native state of two-state proteins and found a
significant correlation between CO and protein folding rates.
Gromiha and Selvaraj3 emphasized the importance of long-
range contacts for determining the folding rates of two-state
proteins and defined a novel parameter, long-range order
(LRO) from the knowledge of long-range contacts (contact
between two residues that are close in space and far in the
sequence) in protein structure. Accordingly, theoretical
models have been proposed for predicting the folding rates
of two-state proteins based on long-range contacts.3-5

Recently, thermodynamic and kinetic experiments demon-
strated that long-range order is one of the best parameters
that correlates with protein-refolding rates including circular
permutations of ribosomal proteins S6 fromThermus ther-
mophilus.6

Debe and Goddard7 have predicted the folding rates for
21 small, single-domain, topologically distinct proteins based
on the first principles of protein folding and observed a good
correlation with experimentally observed folding rates.
Munoz and Eaton8 have proposed an elementary statistical
mechanical model to calculate the protein folding rates from
their three-dimensional structures. Dinner and Karplus9

performed a statistical analysis to predict the protein folding
rates and reported that both contact order and stability play

important roles in determining the folding rate. Further,
neural networks based models have been developed to relate
folding rates of proteins from the combination of topological
parameters, contact order, long-range order and total contact
distance.10 Recently, the role of chain length, native state
geometry and the topological properties of protein conforma-
tion for determining the protein folding rates have been
reported.11-13

Currently, all the available methods for predicting the
folding rates of two- and three-state proteins are based on
their three-dimensional structures, and no method has been
proposed for predicting the folding rates from amino acid
sequence, so far. Hence, it is necessary to develop a model
for predicting the protein folding rates from their amino acid
sequences, which could serve as a useful tool for predicting
the folding rates of proteins with unknown structure. The
folding of a protein is mainly dictated by interresidue
interactions, which are influenced by physical, chemical,
energetic and conformational properties of amino acid
residues. In this work, I have related various amino acid
properties with folding rates of two- and three-state proteins.
I found that the classification of proteins into different
structural classes shows a good correlation between amino
acid properties and protein folding rates. I have set up linear
regression models using amino acid properties for predicting
the folding rates of proteins from the amino acid sequence
along with structural class information. I found an excellent
agreement between experimental and predicted protein
folding rates, and the correlation coefficients are 0.97 and
0.93, with back-check prediction and jack-knife test, respec-
tively.

MATERIALS AND METHODS

Experimental Folding Rates.The experimental folding
rates of 32 two- and three-state proteins used in related
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works3,4,14 form the basis for the present study. The Protein
Data Bank codes15 and experimental ln(kf) values are given
in Table 1. The structural classification of these proteins
yielded six all-R, 13 all-â and 13 mixed class proteins.
Further, I have validated the present method using a set of
other 17 two- and three-state proteins.

Amino Acid Properties. I used a set of 49 diverse amino
acid properties (physical-chemical, energetic and conforma-
tional), which fall into various clusters analyzed by Tommi
and Kanehisa16 in the present study. The amino acid
properties were normalized between 0 and 1 using the
expression,Pnorm(i) ) [P(i) - Pmin]/[Pmax - Pmin], whereP(i),
Pnorm(i) are, respectively, the original and normalized values
of amino acid i for a particular property, andPmin andPmax

are, respectively, the minimum and maximum values. The
numerical values of 20 amino acid residues for six selected
properties are presented in Table 2. Further, the numerical
and normalized values for all the 49 properties used in this

study along with their brief descriptions have been explained
in our earlier articles17,18 and are available on the Web at
http://www.cbrc.jp/∼gromiha/fold_rate/property.html. These
properties were obtained either directly from experiments
or by computational methods using three-dimensional struc-
tures of proteins.

Computational Procedure. The average amino acid
property for each protein,Pave(i) was computed using the
standard formula

where P(j) is the property value of jth residue and the
summation is over N, the total number of residues in a
protein. These property values have been obtained from the
table of 20 amino acid residues (e.g. Table 2), and no
structural information of a specific protein is required for
computation. The computed property valuePave(i) for each
class of proteins was related with experimental folding rate
lnkf(i) using single correlation coefficient. Further, I have
combined the amino acid properties using multiple regression
technique.19 The statistical significance of the results obtained
in the present study has been verified witht-test andp-value
by standard procedures.

RESULTS AND DISCUSSION

Role of Protein Structural Classes.In our earlier work,
we have analyzed the influence of interresidue interactions
in different structural classes, and we found that the
interacting pattern is distinct in each structural class.20

Further, the analysis on the predictive accuracy of several
secondary structure prediction algorithms indicates the
necessity of structural classification for better perfor-
mance.21,22On the other hand, several methods are available
to predict the protein structural class with high accuracy.23

The relationship between LRO and protein folding rates
shows that the classification of proteins into three structural
classes significantly improved the correlation.3 I have also

Table 1. Predicted Folding Rates in a Set of 32 Two- and
Three-State Proteinsa

property ln(kf)PDB
code Rc K0 Pâ Ra ∆ASA ∆GhD pred expt. ref

All- R Proteins
1lmb 0.354 8.45 8.50 (45)
2abd 0.402 6.85 6.55 (46)
1imq 0.398 6.98 7.31 (47)
2pdd 0.313 9.80 9.80 (48)
1hrc 0.341 8.88 8.76 (49)
1ycc 0.320 9.57 9.62 (50)

All- â Proteins
1nyf 0.392 0.473 0.352 0.422 3.18 4.54 (14)
1pks 0.386 0.442 0.325 0.406 -1.39 -1.05 (51)
1shg 0.383 0.481 0.342 0.442 1.72 1.41 (38)
1srl 0.403 0.489 0.325 0.415 3.68 4.04 (52)
1fnf_9 0.466 0.479 0.345 0.410 -0.81 -0.91 (53)
1fnf_10 0.485 0.503 0.335 0.381 4.67 5.48 (54)
1hng 0.418 0.479 0.358 0.420 2.79 2.89 (54)
1ten 0.398 0.455 0.331 0.395 1.72 1.06 (55)
1tit 0.392 0.457 0.381 0.416 3.70 3.47 (54)
1wit 0.441 0.458 0.358 0.392 1.27 0.41 (54)
1csp 0.382 0.450 0.392 0.394 7.22 6.98 (56)
1mjc 0.431 0.457 0.346 0.366 4.47 5.24 (57)
2ait 0.438 0.502 0.322 0.394 5.54 4.20 (58)

Mixed-Class Proteins
1aps 0.421 0.328 0.403 0.632-0.84 -1.48 (59)
1hdn 0.408 0.353 0.386 0.711 3.17 2.70 (60)
1urn 0.415 0.364 0.456 0.671 7.05 5.73 (61)
2hqi 0.452 0.333 0.368 0.729-0.28 0.18 (62)
1pba 0.343 0.381 0.432 0.642 7.11 6.80 (63)
1ubo 0.394 0.354 0.420 0.678 6.00 7.33 (64)
2ptl 0.368 0.285 0.355 0.659 4.61 4.10 (65)
1fkb 0.442 0.347 0.407 0.696 1.63 1.46 (14)
1coa 0.414 0.423 0.454 0.708 4.92 3.87 (66)
1div 0.403 0.334 0.396 0.713 6.90 6.58 (67)
2vik 0.399 0.331 0.417 0.660 5.53 6.80 (14)
1cis 0.417 0.383 0.436 0.676 2.95 3.87 (14)
1pca 0.395 0.411 0.457 0.682 5.99 6.80 (14)

a Rc: Power to be at the C-terminal ofR-helix;17,26 K0: Compress-
ibility; 30 Pâ: â-strand tendency;17,26 Ra: Reduction in solvent acces-
sibility;31 ∆ASA: Solvent accessible surface area for protein unfolding;29

∆GhD: Gibbs free energy change of hydration for denatured protein;29

ln(kf): logarithms of folding rate. The numerical values of 20 amino
acid residues for these six properties are given in Table 2. The regression
equations are as follows: (i)all-R proteins: ln(kf) ) -33.191 (( 0.482)
Rc + 20.195 (( 0.190); (ii)all-â proteins: ln(kf) ) -81.48 (( 1.687)
K0 + 163.08 (( 1.484)Pâ + 79.92 (( 2.091)Ra - 134.99 (( 1.781)
∆ASA- 13.18 (( 0.709); (iii) mixed class proteins: ln(kf) ) -102.60
(( 2.06) K0 - 90.33 (( 2.32) Ra + 131.80 (( 1.95) ∆ASA+ 90.82
(( 1.23) ∆GhD - 38.53 (( 0.83).

Table 2. Numerical Values of 20 Amino Acid Residues for Six
Selected Properties

property

residue Rc K0 Pâ Ra ∆ASA ∆GhD

Ala 1.44 -25.50 0.83 3.70 70.90 -0.58
Asp 2.13 -33.12 0.54 2.60 69.60 -6.10
Cys 0.76 -32.82 1.19 3.03 114.30 -1.91
Glu 2.01 -36.17 0.37 3.30 80.50 -7.37
Phe 1.01 -34.54 1.38 6.60 148.40 -1.35
Gly 0.62 -27.00 0.75 3.13 44.00 -0.82
His 0.56 -31.84 0.87 3.57 107.90 -5.57
Ile 0.68 -31.78 1.60 7.69 142.70 0.40
Lys 0.59 -32.40 0.74 1.79 87.50 -5.97
Leu 0.58 -31.78 1.30 5.88 129.80 0.35
Met 0.73 -31.18 1.05 5.21 147.90 -0.71
Asn 0.93 -30.90 0.89 2.12 74.00 -6.63
Pro 2.19 -23.25 0.55 2.12 73.50 0.56
Gln 1.20 -32.60 1.10 2.70 93.30 -7.12
Arg 0.39 -26.62 0.93 2.53 116.00 -12.78
Ser 0.81 -29.88 0.75 2.43 62.80 -6.18
Thr 1.25 -31.23 1.19 2.60 78.00 -3.66
Val 0.63 -30.62 1.70 7.14 115.60 0.18
Trp 1.40 -30.24 1.37 6.25 167.80 -4.71
Tyr 0.72 -35.01 1.47 3.03 145.90 -8.45

Pave(i) ) ∑
j)1

N

P(j)/N (1)
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reported that the single data set with the inclusion of proteins
from all structural classes yielded a poor correlation (|r| e
0.39) between amino acid properties and protein folding
rates.24 In the present study, I found that the classification
of proteins into all-R, all-â and mixed class remarkably
enhanced the correlation from 0.39 to 0.97, and hence the
structural classification is necessary for successful prediction
of protein folding rates. This result reveals that the classi-
fication includes the information about the topology of
protein, which is found to be an important determinant for
protein folding rates.25

All- r Proteins. The relationship between amino acid
properties and protein folding rates of all-R proteins shows
that the property power to be at the C-terminal ofR-helix
(abbreviated asRc)17,26 has the highest negative correlation
with protein folding rates (r ) -0.99). Further, the thermo-
dynamic and conformational properties show significant
correlation (0.6 to 0.9) with ln(kf) values. This observation
reveals that the formation of local secondary structures
enhances the folding rates of proteins and hence the folding
process is the interplay between the local conformational
preferences and long-range contacts.27 The all-R proteins
have higher folding rates than other classes of proteins, in
general, and hence the folding rates of this class of proteins
may be well explained with single amino acid property. In
contrast, when I generated 49 sets of random numbers and
computed the correlation coefficients, I have obtained the
averager-value of 0.34( 0.23. This verifies that one could
clearly discriminate between amino acid properties and
random numbers and emphasizes the validity of selecting
amino acid properties for understanding/predicting protein
folding rates.

I have developed a simple regression model for predicting
the folding rates of all-R proteins using amino acid properties
and the regression equation is

whereRc is the power to be at the C-terminal ofR-helix.
The numerical values ofRc and folding rates for the six all-R
proteins are presented in Table 1. I observed an excellent
agreement between the predicted folding rates and experi-
mental observations. The correlation coefficient is 0.988
and average deviation is 0.142. Further, I have verified that
the results are statistically significant (t ) 12.09 andp e
2.68e-4).

I have also performed the jack-knife test by determining
the coefficients of the regression equation using (n-1) data
(i.e., omitting one protein at a time) and then computing the
folding rate of the omitted protein. I found that all the
considered proteins agreed extremely well with experiment.
The r-value is 0.958 (t ) 6.685; p e 2.69e-3), and the
average deviation is 0.21. The cross-validation has also been
performed with the complete data set of nine all-R class
proteins (listed in Tables 1 and 3), and I obtained the
correlation of 0.947 (t ) 7.735; p e 1.16e-3) between
experimental and predicted folding rates. TheR2 value is
0.895, and the average deviation is 0.39.

Zhou and Zhou4 used four all-R proteins and obtained the
correlation of 0.92 between experimental and predicted
folding rates. Ther-values obtained with CO and LRO are,
respectively, 0.56 and 0.72. Recently, Shao et al.28 proposed

a new term, “helix parameter”, for predicting the protein
folding rates and reported that it has the correlation of 0.927
with protein folding rate. The present model predicts the
protein folding rates of all-R proteins at the highest accuracy
of r ) 0.99 and 0.96, respectively, with back-check predic-
tion and jack-knife test. These correlation coefficients
demonstrate the better performance of the present method
compared to other methods in the literature.

All- â Proteins. In all-â proteins, the thermodynamic
properties show significant correlation with protein folding
rates, and the highest single property correlation is-0.696
with unfolding entropy change.29 Similar calculations with
random numbers yielded the average correlation of 0.20(
0.16. As the single property with the highestr-value is not
sufficient for accurate prediction I have combined different
amino acid properties with a multiple regression fit. The
computation has been carried out with the combinations of
two to five amino acid properties, and I found that the
combination of four properties substantially improved the
correlation. The corresponding regression equation is

where K0, Pâ, Ra, and ∆ASA are, respectively, compress-
ibility, 30 â-strand tendency,26 reduction in solvent accessibil-
ity31 and solvent accessible surface area for protein unfold-
ing.29 This result shows that the combination of physical,
thermodynamic and conformational properties of amino acid
residues enhances the folding rates of all-â proteins. Ex-
perimental observations support my findings that the local
secondary structure and conformational parameters influence
the folding rates of proteins27,32 and thermodynamic param-
eters play an important role for determining the folding
transition state structures of proteins.33 The inclusion of other
properties may improve the correlation, but it will cause over
fitting of the parameters. On the other hand, the combination
of four properties could predict the folding rates of two- and
three-state proteins at high accuracy.

ln(kf) ) -33.191 (( 0.482)Rc + 20.195 (( 0.190) (2)

Table 3. Validity Test for Predicting the Folding Rates of 17
Proteins

ln(kf)

PDB code pred expt. ref.

All- R Proteins
1CEI 6.19 5.8 (47)
1ENH 9.44 10.53 (68)
1EBD 9.87 9.68 (48)

All- â Proteins
1PNJ -3.16 -1.10 (51)
1SHF 2.91 4.50 (69)
1C9O 10.01 7.20 (70)
1G6P 5.32 6.30 (70)
1LOP 5.65 6.60 (71)

Mixed Proteins
1HZ6 5.09 4.10 (72)
1PGB 7.14 6.00 (73)
2CI2 4.87 3.90 (74)
1AYE 7.46 6.80 (63)
1POH 3.17 2.70 (60)
1AON 1.47 0.80 (75)
1BNI 1.79 2.60 (76)
2LZM 3.60 4.10 (77)
1UBQ 6.00 5.90 (78)

ln(kf) ) -81.48 (( 1.687)K0 + 163.08 (( 1.484)Pâ +
79.92 (( 2.091)Ra - 134.99 (( 1.781)∆ASA-

13.18 (( 0.709) (3)
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I have analyzed the correlation coefficients obtained for a
different combination of four amino acid properties, and the
frequency of combinations at different ranges of correlation
coefficients are shown in Figure 1a. From this figure, I
noticed that most of the combinations have the correlation
in the range of 0.5 to 0.8, and only two combinations have
the correlation higher than 0.95. I have selected the properties
that yielded the highest correlation coefficient for predicting
protein folding rates.

The numerical values of the parameters,K0, Pâ, Ra and
∆ASA for the considered all-â proteins along with their
predicted and experimental ln(kf) values are given in Table
1. I found that the predicted protein folding rates have a very
good agreement with experimental observations and the
correlation between them is 0.956. The calculatedp value
is e 2.58e-5 andt ) 10.86. I have also carried out the jack-
knife test, and the correlation obtained with this method is
0.890 (R2 ) 0.799;p e 1.85e-4 andt ) 6.616).

Zhou and Zhou4 used a set of 13 all-â proteins and
reported that the correlation between predicted protein folding
rates using total contact distance and experimental data is
0.69. With the same data set, the present method predicted
the folding rate of two-state proteins with the remarkable
correlation of 0.956. The deviation of ln(kf) values obtained
with total contact distance is 1.372, whereas the present
method predicted the folding rate within the deviation of
0.575. Further, the standard error of each coefficient in Eqn.
3 is less than 5%. These results emphasize that the present
method could be used for predicting the folding rates of
unknown protein.

Mixed Class Proteins.The relationship between amino
acid properties and protein folding rates in a set of 13 mixed
class proteins shows that the average medium-range con-

tacts34,35has the highest positive correlation (r ) 0.68) with
protein folding rates. This might be due to the fact that the
short- and medium-range interactions may predominate and
initiate protein folding with the formation ofR-helices.36 On
the other hand, a set of random numbers yielded the average
correlation of 0.27( 0.20.

I have analyzed the variation of correlation coefficients
due to the combination of several amino acid properties by
using multiple regression technique. The correlation coef-
ficient obtained with single property is 0.68 and it raised to
0.79, 0.88, 0.95 and 0.95, respectively, with the combination
of 2 to 5 properties. I observed that the combination of four
properties significantly improved the correlation, and hence
I have used the regression equation derived with four amino
acid properties for predicting the folding rates of mixed class
proteins. The regression equation is

where∆GhD is the Gibbs free energy change of hydration
for denatured protein.29 Interestingly, the three properties,
K0, Ra and ∆ASA,are also important for determining the
folding rates of all-â proteins. The combination of free energy
with other thermodynamic and physical properties influences
the fast folding rates of two- and three-state proteins.
Previously, it has been shown that the combination of free
energy and contact order determines the folding rates.9

The analysis on the variation of correlation coefficients
at different combinations of amino acid properties revealed
that most of the combinations yielded the correlation in the
range of 0.5 to 0.8, as observed in all-â proteins (Figure
1b). The combination of the properties,K0, Ra, ∆ASAand
∆GhD, has the highest correlation. The numerical values for
all the properties and predicted ln(kf) values are presented
in Table 1. I found an excellent correlation of 0.95 between
experimental and predicted protein folding rates. Further, I
have corroborated the statistical significance of the results
(p e 3.02e-5 andt ) 10.3).

Recent studies on protein folding rates showed that the
ln(kf) values of mixed class proteins have been predicted with
high accuracy. The correlation coefficient obtained with CO,
LRO and TCD are, respectively, 0.82, 0.86 and 0.92. The
present method predicted the folding rates of two-state
proteins with the highest accuracy, and the correlation
coefficient is 0.95. I have also performed a jack-knife test
and obtained ther-value of 0.87 (R2 ) 0.749;p e 3.9e-4;t
) 5.729). The standard errors obtained for fitting the data
are also included in Eqn. 4, which is less than 3%. Further,
I have estimated the deviation of ln(kf) values, and the
average deviation obtained for back-check prediction and
jack-knife test are, respectively, 0.737 and 1.253.

Prediction of Protein Folding Rates.I have used three
different equations (Eqns. 2-4) for predicting the folding
rates of proteins belonging to each structural class. The
results obtained with back-check prediction are presented in
Table 1. I found an excellent correlation of 0.97 between
predicted and experimental protein folding rates for the
sample set of 32 proteins as seen in Figure 2a. Thet-test
and p-values are, respectively, 23.54 ande 2.98e-13, and

Figure 1. Frequency of the combinations of four amino acid
properties at different ranges of correlation coefficients. (a) all-â
proteins. (b) mixed class proteins.

ln(kf) ) -102.60 (( 2.06)K0 - 90.33 (( 2.32)Ra +
131.80 (( 1.95)∆ASA+ 90.82 (( 1.23)∆GhD -

38.53 (( 0.83) (4)
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the average deviation is 0.56. I have also performed a jack-
knife test to examine the validity of the present method, and
the results are shown in Figure 2b. I found that about 60%
of the considered proteins (19 out of 32 proteins) agreed
very well with the experiment and the deviation is less than
one unit. The correlation coefficient between experimental
and predicted ln(kf) values is 0.93 (t ) 13.8;p e 2.11 e-11),
and the average deviation is 0.931.

Validating the Present Method. I have calculated the
folding rates of other 17 two- and three-state proteins
belonging to different structural classes and compared the
predicted ln(kf) values with experimental observations. I have
presented the list of proteins along with predicted and
experimental folding rates in Table 3. In all-R proteins, all
the three proteins are predicted within the deviation of 1.1.
The correlation between predicted and experimental ln(kf)
values in all-â proteins is 0.95. In mixed proteins, 8 out of
9 proteins are predicted within the deviation of 1.0. Con-
sidering all the 17 proteins together, the correlation coef-
ficient is 0.94, and the average deviation is 0.96. Recently,
Scott et al.37 reported the folding rate ofR-spectrin 15th

domain for which the three-dimensional structure is not
available. I have calculated the folding rate using Eqn. 2
and observed a good agreement between predicted and
experimental folding rates (within the deviation of 2.0). This
result emphasizes the validity of the present method for
predicting the protein folding rates.

Prediction of Protein Folding Rates upon Mutations.I
have examined the performance of the present method for
predicting the protein folding rates upon mutations. Viguera
et al.38 measured the experimental folding rates of SH3
domain of src for the wild-type protein and seven mutants.

This protein belongs to all-â class, and I have calculated
the folding rates using Eqn. 3. The relationship between
experimental and predicted folding rates is shown in Figure
3, and I observed a good agreement. Ther value is 0.87,
and the average deviation is 0.60.

Vu et al.39 constructed a pseudo wild type of barnase, in
which residue His102 is mutated to Ala. They have measured
the folding rates of 15 mutants under the background of
pseudo wild-type protein. Barnase belongs to a mixed class
protein, and I have calculated the difference of folding rates
for each of the 15 mutants with respect to pseudo wild-type
protein using Eqn. 4 and the results are presented in Table
4. I found that 12 out of 15 mutants are predicted within the
deviation of 1.0. This data set contains several mutants with
the same amino acid replacements at different positions (e.g.,
L89G and L95G; Y13G, Y17G and Y97G), and the present
method is not able to distinguish them.

From these results I observed that the positional parameters
play an important role in understanding the protein folding
rates upon mutations, and the analysis based on the separation
of mutants based on secondary structure and solvent acces-
sibility may improve the accuracy of prediction as in the
case of protein mutant stability andΦ value analysis.40-42

Comparison with Other Methods. The protein folding
rate predictive ability of eight different methods along with
the results obtained with the present multiple regression
model are presented in Table 5.

Figure 2. Relationship between experimental and predicted ln(kf)
values using multiple regression model in 32 two-state proteins.
(a) back-check prediction. (b) jack-knife test.

Figure 3. Comparison between experimental and predicted folding
rates in the mutants of SH3 src domain. Experimental data are taken
from ref 38.

Table 4. Prediction of Protein Folding Rates upon Mutations in
Barnase

∆ln(kf)

mutant experimenta predicted

D 12 G -0.01 -0.50
D 12 A 0.20 -0.30
Y 13 G -0.48 -1.17
Q 15 G -0.18 -0.44
Q 15 A 0.22 -0.37
Y 17 G -0.94 -1.17
I 55 G 0.01 -0.79
R 72 G -0.12 -0.02
E 73 G -0.08 -0.53
I 88 G -1.72 -0.79
L 89 G 0.32 -0.93
L 95 G -0.75 -0.93
I 96 G -3.86 -0.79
Y 97 G -2.94 -1.17
T 100G -0.38 -0.48

a Data taken from ref 39.
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Plaxco et al.2 proposed the concept of contact order and
related it with protein folding rates. Gromiha and Selvaraj3

introduced the parameter, long-range order from the knowl-
edge of long-range contacts in protein structures for predict-
ing protein folding rates. Zhou and Zhou4 combined the
parameters CO and LRO and formed the term, total contact
distance to relate with protein folding rates. The correlation
coefficients obtained with CO, LRO and TCD are, respec-
tively, 0.74, 0.81 and 0.88. Debe and Goddard7 proposed a
method based on first principles approach and reported the
correlation of 0.78 between experimental and predicted
folding rates. Munoz and Eaton8 developed a simple statisti-
cal model and obtained the correlation of 0.83 between theory
and experiment. Dinner and Karplus9 combined CO and free
energy change to predict the folding rates of two-state
proteins and reported the correlation of 0.79. Recently,
Makarov et al.43 developed a topomer search model, which
increased the correlation to 0.89. Further, Gong et al.44

proposed a multiple regression model for predicting the
protein folding rates with their local secondary structure
content and reported the correlation coefficient of 0.91. The
present method shows the correlation of 0.97 and 0.93
between experimental and predicted folding rates with the
back-check and jack-knife tests, respectively. These accuracy
levels are better than other methods in the literature. The
high accuracy attained by the present method may be due to
the following reasons: (i) it revealed the important amino
acid properties for accelerating protein folding rates, (ii) the
combination of properties has been systematically selected
for understanding/predicting the folding rates of proteins, and
(iii) the selected properties are reliable in understanding
protein folding rates as demonstrated from experiments.

Although the direct comparison of correlation coefficients
obtained in the present work with the other methods is not
appropriate, the empirical relationships derived for different
structural classes predict the folding rates with greatest
accuracy. Further, all the other methods use the three-
dimensional structure information for predicting the protein
folding rates. The present method is the first available one,
which uses the amino acid sequence (along with structural
class information) for predicting the folding rates of proteins.
These comparisons reveal the superior performance of the
present method for predicting the folding rates of proteins.

CONCLUSIONS

The interaction of amino acid residues among themselves
and with surrounding medium dictates the structure of a
protein and hence the rate of folding. Interresidue interactions
are mainly influenced by physical-chemical, energetic and
conformational properties of amino acid residues in protein

structures. I have systematically analyzed the relationship
between amino acid properties and protein folding rates in
different structural classes of proteins. I have set up linear
regression models for predicting the folding rates of two-
and three-state proteins using the combination of amino acid
properties. The present method is the first one, which can
predict the protein folding rates from amino acid sequence
along with structural class information. The predicted folding
rates show an excellent correlation with experimental
observations; the correlation coefficients are 0.99, 0.96 and
0.95, respectively, for all-R, all-â and mixed class proteins.
These accuracy levels are superior to other methods in the
literature.
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