# Supporting Information for "The MC-DFT Approach 

 Including the SCS-MP2 Energies to the New Minnesota-type Functionals "Po-Chun Liu and Wei-Ping Hu*<br>Department of Chemistry and Biochemistry, National Chung Cheng University<br>Chia-Yi, Taiwan 621

E-mail: chewph@ccu.edu.tw

Submitted to J. Comput. Chem., 2014
5 Tables, 10 Figure, 17 pages.

Table S1. Mean Unsigned Errors ( $\mathrm{kcal} / \mathrm{mol}$ ) of MP2, SCS-MP2, MC-MP2 and MC-SCS-MP2 methods

| Basis set combination | MP2 | SCS-MP2 |
| :--- | :---: | :---: |
| pdz | 22.8 | 8.40 |
| apdz | 16.3 | 5.78 |
| ptz | 7.14 | 5.26 |
| pdz/ptz | 6.22 | 4.36 |
| pdz/apdz/ptz | 5.66 | 4.15 |
| aptz | 5.48 | 4.04 |
| pdz/ptz/aptz | 5.38 | 3.93 |
| MG3S | 7.14 | 4.83 |
| pdz/MG3S | 6.85 | 4.82 |
| Pop-dp | 16.31 | 6.53 |
| Pop-2d2p | 11.31 | 5.25 |
| Pop-dp/Pop-2d2p | 7.17 | 5.07 |
| Pop-2df2pd | 5.85 | 4.37 |
| Pop-dp/Pop-2df2pd | 5.66 | 3.86 |
| Pop-2d2p/Pop-2df2pd | 5.70 | 4.03 |
| Pop-dp/Pop-2d2p/Pop-2df2pd | 5.65 | 3.81 |
| Pop-3df2pd | 6.08 | 4.52 |
| Pop-dp/Pop-3df2pd | 6.04 | 4.26 |
| Pop-2df2pd/Pop-3df2pd | 5.81 | 4.35 |
| Pop-dp/Pop-2d2p/Pop-3df2pd | 5.95 | 4.24 |

Table S2. Relative Computational $\operatorname{Cost}^{a}$ and P/C Ratios of MP2, SCS-MP2, MC-MP2 and MC-SCS-MP2 methods.

| Basis set combination | MP2 | SCS-MP2 |
| :--- | :---: | :---: |
| pdz | $4 \%(0.05)^{b}$ | $(0.40)$ |
| apdz | $9 \%(0.04)$ | $(0.33)$ |
| ptz | $24 \%(0.08)$ | $(0.15)$ |
| pdz/ptz | $27 \%(0.10)$ | $(0.19)$ |
| pdz/apdz/ptz | $36 \%(0.09)$ | $(0.16)$ |
| aptz | $168 \%(0.02)$ | $(0.04)$ |
| pdz/ptz/aptz | $196 \%(0.02)$ | $(0.03)$ |
| MG3S | $28 \%(0.07)$ | $(0.15)$ |
| pdz/MG3S | $31 \%(0.07)$ | $(0.14)$ |
| Pop-dp | $7 \%(0.06)$ | $(0.36)$ |
| Pop-2d2p | $12 \%(0.06)$ | $(0.30)$ |
| Pop-dp/Pop-2d2p | $19 \%(0.10)$ | $(0.21)$ |
| Pop-2df2pd | $25 \%(0.12)$ | $(0.21)$ |
| Pop-dp/Pop-2df2pd | $31 \%(0.10)$ | $(0.21)$ |
| Pop-2d2p/Pop-2df2pd | $37 \%(0.08)$ | $(0.17)$ |
| Pop-dp/Pop-2d2p/Pop-2df2pd | $44 \%(0.07)$ | $(0.16)$ |
| Pop-3df2pd | $40 \%(0.07)$ | $(0.12)$ |
| Pop-dp/Pop-3df2pd | $47 \%(0.06)$ | $(0.12)$ |
| Pop-2df2pd/Pop-3df2pd | $53 \%(0.06)$ | $(0.10)$ |
| Pop-dp/Pop-2d2p/Pop-3df2pd | $59 \%(0.05)$ | $(0.09)$ |

${ }^{\text {a Relative }}$ to the M06-2X/aptz calculation, the cost of MP2 and SCS-MP2 is the same.
${ }^{b}$ Numbers in parentheses refer to the performance/cost $(\mathrm{P} / \mathrm{C})$ ratios which were defined as $1 /\left(\right.$ relative cost $\times \mathrm{MUE}^{2}$ ).

Table S3. Relative Computational $\operatorname{Cost}^{a}$ and $\mathrm{P} / \mathrm{C}$ Ratios of the M08-HX functional ${ }^{b}$.

| Basis set combination | MC-M08-HX | MP2 \| MC-M08-HX | MC-MP2\| <br> MC-M08-HX |
| :--- | :---: | :---: | :---: |
| ptz | $17 \%(0.60)^{c}$ | $25 \%(0.79)$ | $51 \%(0.68)$ |
| pdz/apdz/ptz | $31 \%(0.98)$ | $40 \%(0.94)$ | $65 \%(0.61)$ |
| aptz | $68 \%(0.22)$ | $76 \%(0.45)$ | $102 \%(0.48)$ |
| pdz/ptz/aptz | $88 \%(0.39)$ | $97 \%(0.46)$ | $123 \%(0.46)$ |
| MG3S | $21 \%(1.77)$ | $29 \%(1.45)$ | $55 \%(1.00)$ |
| pdz/MG3S | $25 \%(1.59)$ | $33 \%(1.28)$ | $59 \%(1.05)$ |
| Pop-2d2p | $11 \%(1.53)$ | $19 \%(1.47)$ | $45 \%(1.43)$ |
| Pop-dp/Pop-2d2p | $17 \%(2.08)$ | $26 \%(1.85)$ | $52 \%(1.26)$ |
| Pop-2df2pd | $19 \%(1.72)$ | $28 \%(1.32)$ | $53 \%(1.00)$ |
| Pop-dp/Pop-2df2pd | $26 \%(1.59)$ | $34 \%(1.27)$ | $60 \%(0.91)$ |
| Pop-dp/Pop-2d2p/Pop-2df2pd | $37 \%(1.17)$ | $45 \%(1.13)$ | $71 \%(0.94)$ |
| Pop-3df2pd | $26 \%(1.39)$ | $34 \%(1.10)$ | $60 \%(0.75)$ |
| Pop-dp/Pop-3df2pd | $32 \%(1.09)$ | $41 \%(0.97)$ | $67 \%(0.75)$ |
| Pop-dp/Pop-2d2p/Pop-3df2pd | $43 \%(0.98)$ | $52 \%(0.99)$ | $77 \%(0.90)$ |

${ }^{a}$ Relative to the M06-2X/aptz calculation.
${ }^{b}$ All the calculations in Table S3 were carried out using the Molpro 2012.1 program.
${ }^{c}$ Numbers in parentheses refer to the performance/cost $(\mathrm{P} / \mathrm{C})$ ratios which were defined as $1 /\left(\right.$ relative cost $\left.\times \mathrm{MUE}^{2}\right)$.

Table S4. Relative Computational $\operatorname{Cosst}^{a}$ and $\mathrm{P} / \mathrm{C}$ Ratios of the MN12-SX functional.

| Basis set combination | MC-MN12-SX | MP2 <br> MC-MN12-SX | MC-MP2 <br> MC-MN12-SX |
| :--- | :---: | :---: | :---: |
| ptz | $25 \%(0.29)$ | $34 \%(0.40)$ | $59 \%(0.43)$ |
| pdz/apdz/ptz | $38 \%(0.32)$ | $47 \%(0.49)$ | $72 \%(0.39)$ |
| aptz | $173 \%(0.06)$ | $182 \%(0.14)$ | $207 \%(0.15)$ |
| pdz/ptz/aptz | $202 \%(0.07)$ | $211 \%(0.12)$ | $236 \%(0.14)$ |
| MG3S | $35 \%(0.75)$ | $43 \%(0.71)$ | $69 \%(0.49)$ |
| pdz/MG3S | $39 \%(0.68)$ | $47 \%(0.67)$ | $73 \%(0.47)$ |
| Pop-2d2p | $11 \%(1.54)$ | $20 \%(1.14)$ | $46 \%(0.63)$ |
| Pop-dp/Pop-2d2p | $18 \%(1.09)$ | $27 \%(0.87)$ | $53 \%(0.56)$ |
| Pop-2df2pd | $32 \%(0.69)$ | $41 \%(0.65)$ | $66 \%(0.45)$ |
| Pop-dp/Pop-2df2pd | $39 \%(0.57)$ | $48 \%(0.56)$ | $73 \%(0.41)$ |
| Pop-dp/Pop-2d2p/Pop-2df2pd | $51 \%(0.44)$ | $59 \%(0.46)$ | $85 \%(0.36)$ |
| Pop-3df2pd | $64 \%(0.32)$ | $73 \%(0.34)$ | $98 \%(0.28)$ |
| Pop-dp/Pop-3df2pd | $71 \%(0.30)$ | $80 \%(0.31)$ | $105 \%(0.28)$ |
| Pop-dp/Pop-2d2p/Pop-3df2pd | $83 \%(0.26)$ | $91 \%(0.27)$ | $117 \%(0.25)$ |

${ }^{a}$ Relative to the M06-2X/aptz calculation.
${ }^{b}$ Numbers in parentheses refer to the performance/cost (P/C) ratios which were defined as $1 /\left(\right.$ relative cost $\times$ MUE $^{2}$ ).

Table S5. Mean Unsigned Errors ( $\mathrm{kcal} / \mathrm{mol}$ ) of Several MC-MP2 | M06-2X and MC-SCS-MP2/MC-M06-2X Methods with Various Basis Set Combinations for the MP2 and M06-2X Parts.

| $\begin{array}{l}\text { Basis sets combination for } \\ \text { M06-2X }\end{array}$ | MC-M06-2X | $\begin{array}{c}\text { MP2/apdz } \mid \\ \text { MC-M06-2X }\end{array}$ |  | $\begin{array}{c}\text { SCS-MP2/apdz } \\ \text { MC-M06-2X }\end{array}$ | SCS-MP2/aptz $\mid$ | SCS-MP2/MG3S $\mid$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| MC-M06-2X |  |  |  |  |  |  |\(\left.\quad \begin{array}{c}SCS-MP2/Pop-2df2pd \mid <br>

MC-M06-2X\end{array}\right]\)

|  | MC-MP2/[pdz/apdz/ptz] <br> MC-M06-2X | MC-SCS-MP2/[pdz/apdz/ptz] $\mid$ <br> MC-M06-2X | MC-SCS-MP2/[Pop-dp/Pop-2d2p/Pop-2df2pd] $\mid$ <br> MC-M06-2X |
| :--- | :---: | :---: | :---: |
| pdz | 2.24 | 2.06 | 2.95 |
| ptz | 1.73 | 1.69 | 2.19 |
| pdz/ptz | 1.52 | 1.59 | 1.75 |
| $\mathrm{pdz} / \mathrm{apdz} / \mathrm{ptz}$ | 1.43 | 1.41 | 1.43 |
| aptz | 1.57 | 1.51 | 1.42 |
| pdz/ptz/aptz | 1.41 | 1.37 | 1.35 |
| MG3S | 1.55 | 1.39 | 1.36 |
| pdz/MG3S | 1.44 | 1.26 | 1.23 |
| Pop-dp | 1.84 | 1.75 | 1.61 |
| Pop-dp/Pop-2d2p | 1.32 | 1.22 | 1.27 |
| Pop-2df2pd | 1.60 | 1.42 | 1.39 |
| Pop-dp/Pop-2df2pd | 1.60 | 1.41 | 1.31 |
| Pop-dp/Pop-2d2p/Pop-2df2pd | 1.28 | 1.21 | 1.26 |



Figure S1. MUEs ( $\mathrm{kcal} / \mathrm{mol}$ ) of the B3LYP functional using various basis sets and basis set combinations. The tops of the green, red, and blue bars were the results by the MC-DFT, SCS-MP2 | MC-DFT, and MC-SCS-MP2 | MC-DFT approaches, respectively.


Figure S2. MUEs ( $\mathrm{kcal} / \mathrm{mol}$ ) of the M06-2X functional using various basis sets and basis set combinations. The tops of the green, red, and blue bars were the results by the MC-DFT, SCS-MP2 | MC-DFT, and MC-SCS-MP2 | MC-DFT approaches, respectively.


Figure S3. MUEs (kcal/mol) of the M08-HX functional using various basis sets and basis set combinations. The tops of the green, red, and blue bars were the results by the MC-DFT, SCS-MP2 | MC-DFT, and MC-SCS-MP2 | MC-DFT approaches, respectively.


Figure S4. MUEs ( $\mathrm{kcal} / \mathrm{mol}$ ) of the M11 functional using various basis sets and basis set combinations. The tops of the green, red, and blue bars were the results by the MC-DFT, SCS-MP2 | MC-DFT, and MC-SCS-MP2 | MC-DFT approaches, respectively


Figure S5. MUEs ( $\mathrm{kcal} / \mathrm{mol}$ ) of the MN12-SX functional using various basis sets and basis set combinations. The tops of the green, red, and blue bars were the results by the MC-DFT, SCS-MP2 | MC-DFT, and MC-SCS-MP2 | MC-DFT approaches, respectively.


Figure S6. MUE ( $\mathrm{kcal} / \mathrm{mol}$ ), Relative Cost (\%) and P/C Ratios of Several Efficient Methods using the B3LYP functional.


Figure S7. MUE ( $\mathrm{kcal} / \mathrm{mol}$ ), Relative Cost (\%) and P/C Ratios of Several Efficient Methods using the M06-2X functional.


Figure S8. MUE ( $\mathrm{kcal} / \mathrm{mol}$ ), Relative Cost (\%) and P/C Ratios of the Several Efficient Methods using the M08-HX functional.


Figure S9. MUE (kcal/mol), Relative Cost (\%) and P/C Ratios of the Several Efficient Methods using the M11 functional.


Figure S10. MUE (kcal/mol), Relative Cost (\%) and P/C Ratios of the Several Efficient Methods using the MN12-SX functional.

