Supporting Information for "Theoretical Study on the Gas-Phase $S_N 2$ Reaction of Microhydrated Fluoride with Methyl Fluoride"

Jien-Lian Chen and Wei-Ping Hu*

Department of Chemistry and Biochemistry, National Chung Cheng University Chia-Yi, Taiwan 621

E-mail: <u>chewph@ccu.edu.tw</u> Fax: 886-5-272-1040

Six pages, details of dynamics calculation, two tables of calculated rate constants and KIEs, two figures of calculated geometry.

I. The details of dynamics calculations

The low-level reaction path was calculated at the MP2/aug-cc-pVDZ level. The dual-level correction was based on the TS and the ion-dipole complexes on the reactant side (CH₃F····F⁻ (H₂O)) and on the product side (CH₃F(H₂O) ····F⁻). The high-level energies were based on the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ results. The moment of inertias and vibrational frequencies of stationary points were obtained using the low-level values without further corrections. On the product side, the ion dipole complex geometry was taken from the last point of reaction-path calculation. The SIL-1 interpolated correction scheme was applied in the dual-level calculation using the CCSD(T)/aug-cc-pVTZ energies along the low-level reaction path geometry to estimate the barrier width. The reaction coordinates at half-height width of the high-level classical barrier were estimated -1.20 bohr (reactant side) and 1.83 bohr (product side), respectively.

	$CH_3F+F^-(H_2O)$		CH ₃ F+F ⁻	
T (K)	TST	CVT/SCT	TST	CVT/SCT
50	$6.73(-64)^a$	1.45(-48)	9.82(-8)	9.82(-8)
60	1.69(-55)	1.62(-44)	1.53(-8)	1.53(-8)
70	1.70(-49)	1.55(-41)	4.02(-9)	4.02(-9)
80	5.46(-45)	3.30(-39)	1.46(-9)	1.46(-9)
90	1.77(-41)	2.67(-37)	6.64(-10)	6.64(-10)
100	1.15(-38)	1.15(-35)	3.52(-10)	3.52(-10)
125	1.41(-33)	3.22(-32)	1.13(-10)	1.13(-10)
150	3.70(-30)	2.10(-29)	5.35(-11)	5.34(-11)
175	1.09(-27)	3.39(-27)	3.19(-11)	3.19(-11)
200	8.11(-26)	1.84(-25)	2.21(-11)	2.21(-11)
250	3.80(-23)	6.19(-23)	1.38(-11)	1.38(-11)
300	2.57(-21)	3.57(-21)	1.07(-11)	1.07(-11)
400	6.22(-19)	7.43(-19)	8.62(-12)	8.62(-12)
500	2.03(-17)	2.26(-17)	8.38(-12)	8.38(-12)

Table S1 The calculated Constants (in cm³ molecule⁻¹ s⁻¹) of CH₃F+F⁻(H₂O) and CH₃F+F⁻ reactions

 $a_{6.73(-64)}$ means 6.73×10^{-64}

T (K)	KIE(CD ₃)	KIE(¹³ C)	KIE(¹⁴ C)
50	0.24	1.35	1.74
60	0.31	1.29	1.61
70	0.38	1.25	1.52
80	0.45	1.22	1.46
90	0.50	1.20	1.41
100	0.55	1.18	1.37
125	0.65	1.15	1.30
150	0.72	1.13	1.26
175	0.77	1.11	1.22
200	0.81	1.10	1.20
250	0.86	1.08	1.16
300	0.89	1.07	1.14
400	0.92	1.06	1.11
500	0.93	1.05	1.09

Table S2 Calculated KIEs of CH_3F+F^- reaction by the TST method

Figure S1. Calculated structures, from top: reactant, transition state, and ion-dipole complex by B3LYP/aug-cc-pVTZ methods. Bond lengths are in Å (blue) and bond angles in degrees (red).

Figure S2. Calculated structure (C_{3v}) of the gas-phase S_N^2 transition state of the $CH_3F + F^-$ reaction by MP2/aug-cc-pVTZ methods.