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Abstract

Ž . Ž .We propose a multi-coefficient modification MCG3 of the Gaussian-3 G3 electronic structure method that is suitable
for calculating continuous potential energy surfaces. We tested it for atomization energies and found that it improves the
accuracy by 8% as compared to G3 and reduces the cost of single-point energy calculations by 50%. The method should be
useful for calculating bond energies, potential energy surfaces, and thermochemical data of molecules. q 1999 Elsevier
Science B.V. All rights reserved.

Ž . w xThe Gaussian-3 G3 method 1 is a recently
proposed modification of the successful and widely

Ž . w xapplied Gaussian-2 G2 method 2 for thermochem-
ical calculations that both reduces the cost and de-
creases the average error. Both G3 and G2 are
defined to include geometry optimization followed
by calculations of electronic and vibrational energy
to yield heats of formation. Our interest is more
general, namely in the calculation of potential energy

Žsurfaces heats of formation may be calculated from
.potential energy surfaces, but not vice versa . Thus

when we refer to the G2 or G3 methods we refer to
single-point energy calculations by the same proce-
dure as used for the electronic energy part of the
original G2 or G3 scheme; similar uses of G2 have

w xbeen considered by previous workers 3 .
The G3 method involves three essential improve-

Ž .ments over G2, namely: 1 substitution of a polar-
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ized 6-31G basis set for the polarized 6-311G basis
Ž .set in some of the steps; 2 a more balanced treat-

ment of contracted s and p functions and valence
polarization functions for first- and second-row

Ž .atoms; and 3 a final-step calculation involving core
correlation and core polarization functions. Improve-

Ž . Ž .ment 1 lowers the cost more than improvements 2
Ž .and 3 raise it, and the gain in accuracy from

Ž . Ž .improvements 2 and 3 outweigh the potential loss
Ž .in accuracy from modification 1 .

We have recently proposed a modification, called
Ž . w xmulti-coefficient G2 MCG2 4 , of the G2 scheme

that decreases the cost about 10% and decreases the
average error for first-row atoms by almost a factor
of 2. In the present Letter we propose a similar

Ž .modification, called multi-coefficient G3 MCG3
for the G3 method. The advantages of MCG3 as
compared to G3 are reduced cost, improved accu-
racy, and making the energy a continuous function of
geometry. The advantage of MCG3 as compared to
MCG2 is that MCG3 can treat both first- and sec-
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ond-row atoms reasonably uniformly, whereas we
restricted MCG2 to first-row atoms because the basis
sets in the G2 method do not treat the second row
uniformly with the first row.

ŽThe electronic energy including nuclear repulsion
.but not vibration or rotation in G3 is given by

E G3 sE QCISD T r6-31G dŽ . Ž . Ž .
qD E q qD E 2dfŽ . Ž .
qD E G3large qD E SOŽ . Ž .
qD E HLC , 1Ž . Ž .

where G3large is a new basis set containing core
polarization functions, and the other terms are de-

w xfined elsewhere 1 . The G3 method essentially pro-
Ž .vides an approximation to a QCISD T rG3large cal-

culation from several smaller calculations, namely,
Ž . Ž . Ž .from QCISD T r6-31G d , MP4r6-31 q G d ,

Ž . Ž .MP4r6-31G 2df, p , and MP2 full rG3large energy
w xcalculations, where the notation is standard 1,5 , and

Ž .the frozen-core FC approximation is implied except
where we indicate ‘full’. In order to condense the

Ž .notation in Eq. 2 below, we will abbreviate the first
Ž .and third basis sets used in these calculations as d

Ž .and 2df, p , respectively. For future reference we
Ž .note that performing a QCISD T calculation with a

given basis set also yields lower-level Hartree–Fock
Ž .HF , MP2, MP4SDQ, and MP4 results for that basis
at no additional cost because they are all part of the
overall calculation. Similarly MP4 calculations in-
clude MP4SDQ as a subset, and MP2 calculations
include HF. These facts become important as we
define the MCG3 method.

The MCG3 method is written as

E MCG3 sc E HFr dŽ . Ž .1

<qc D E HFrMG3 dŽ .2

<qc D E MP2 HFr dŽ .3

< <qc D E MP2 HFrMG3 dŽ .4

<qc D E MP4SDQ MP2r dŽ .5

< <qc D E MP4SDQ MP2r 2df, p dŽ . Ž .6

<qc D E MP4 MP4SDQr dŽ .7

< <qc D E MP4 MP4SDQr 2df, p dŽ . Ž .8

<qc D E QCISD T MP4r dŽ . Ž .9

qE qE , 2Ž .SO CC

<where the pipe ‘ ’ notation is defined by

<D E LrB2 B1 sE LrB2 yE LrB1 , 3Ž . Ž . Ž .Ž .
<D E L2 L1rB sE L2rB yE L1rB , 4Ž . Ž . Ž .Ž .

and

< < <D E L2 L1rB2 B1 sE L2 L1rB2Ž . Ž .
<y L2 L1rB1 , 5Ž .Ž .

where L1 and L2 denote levels, B1 and B2 denote
Žbasis sets, E and E are simple estimates requir-SO CC

.ing negligible computational effort described else-
w xwhere 6,7 of the spin–orbit and core correlation

� 4energy, the coefficients c are optimized againsti
Ž .experimental data, and the MG3 modified G3 basis

set denotes the G3large basis set without the core
polarization functions. Note that we perform an
MP2rMG3 calculation instead of the MP2
Ž .full rG3large calculation used in the G3 method.
This is because we obtain the core correlation effects

w xby a simple estimate 7 instead of by the more
expensive electronic structure calculation. Fig. 1 pro-
vides a diagram that helps one to visualize the terms

Ž . Ž .in Eq. 2 . The motivation for Eq. 2 is that we scale

Fig. 1. Coefficient diagram for MCG3.
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Table 1
Optimized coefficients

Method c c c c c c c c c1 2 3 4 5 6 7 8 9

MCG3 0.9936 1.1374 1.0148 1.2926 1.1685 1.2005 1.6572 1.6145 1.2206
MMCG3 1.0034 1.1215 1.0645 1.1443 1.2207 1.0666 1.4719 0.8982 1.3037

individual components of the correlation energy to
make up for the lack of full configuration interaction
and the incompleteness of the one-electron basis set.

Ž .All of the quantities needed in Eq. 2 are calcu-
lated as part of the G3 method, except for the
MP2rMG3 calculation, which replaces the more

Ž .expensive MP2 full rG3large calculation. We also
note that we do not use any calculations with the

Ž .6-31qG d basis set, and this fact also decreases the
overall cost of the MCG3 method. As a result, the
computer time for the more expensive molecules
drops by about a factor of 2.0. 1

The training set is composed of 49 molecules for
w xwhich we have recently 6 estimated the zero-point-

exclusive atomization energies, D , on the basis ofe

experimental heats of formation and accurate esti-
mates of vibrational energies. This 49-molecule set is
a subset of the sets against which the G2 and G3
methods were originally parameterized. For the pre-
sent Letter we calculated the electronic energies of
these 49 molecules by the methods used for the

Ž . Ž .components of Eqs. 1 and 2 . All these calcula-
Ž .tions were carried out at MP2r6-31G d geometries,

Žwhich are available at Curtiss’s website http:rr
.chemistry.anl.govrcompmat , and which are the

same geometries used in the original G2 and G3
methods. All calculations were carried out with the

w xGAUSSIAN94 computer program 8 . The coefficients
Ž .of Eq. 2 were then determined by a least-squares fit

1 This cost ratio was obtained on an SGI Origin 2000 as an
average over the ratios for the six most expensive molecules in the
G3 calculations, namely, SO , Si H , CH SH, SO, ClO, and2 2 6 3

CH Cl. Only the CPU time required for the single-point energy3

calculations is included in this estimate. The CPU time required
for geometry optimizations in either method or for frequency
calculations in standard G3 was omitted from the mean CPU time
because the present method is designed for calculating potential
energy surfaces, which requires a large number of single-point
calculations.

to the 49 experimentally based values of D and aree

given in row one of Table 1. We note that all the
coefficients are positive, which implies that a ‘physi-
cal’ fit was achieved. In fact, all coefficients are
between 0.99 and 1.66, which is very reasonable. For
example, the coefficient c is 1.29, which indicates4

that the MG3 basis captures only 1.00r1.29s78%
Ž .of the differences between the 6-31G d estimate of

the MP2 component of the valence correlation en-
ergy and an infinite-basis estimate of that compo-
nent.

From the mean errors in Table 2 we can see that
the new MCG3 method reduces the mean unsigned

Ž . Ž .error MUE and the root mean square error RMSE
by ;8% and ;10%, respectively, as compared to
G3. This increase in accuracy comes with a reduc-
tion in cost of ;50%.

Notice that we do not include the last term of Eq.
Ž . Ž .1 , which is the higher-level correction HLC . This
term is problematic because it does not show proper
dissociation. In particular, in the G3 method, it
involves different constants for atoms than for
molecules, and thus it cannot be used to predict
continuous potential energy surfaces along bond
breaking coordinates. Therefore, we do not include

Ž .an HLC term in Eq. 2 . For comparison with meth-

Table 2
a Ž .Mean errors kcalrmol

b c dMethod MSE MUE RMSE
eG2 y0.23 1.21 1.72

PDG3 y6.98 6.98 7.63
eG3 y0.44 0.97 1.24

MMCG3 0.09 0.99 1.23
MCG3 0.03 0.90 1.10

aAll mean errors are with respect to the 49 values of D for thee
w xtraining set, which is described in full in Ref. 6 .

b Mean signed error.
c Ž .Mean unsigned absolute error.
dRoot mean square error.
e Ž .Includes a higher-level correction HLC .
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ods that do not include and HLC we define proper-
dissociation Gaussian-3 by

E PDG3 sE G3 yD E HLC . 6Ž . Ž . Ž . Ž .
Table 2 shows that the MCG3 method has a mean
unsigned error that is smaller than that for the PDG3
method by a factor of ;8. This comparison is
important because neither contains the HLC; there-
fore, this provides a comparison of the methods
under the constraint that discontinuous empirical
terms are not included in either.

A point of interest is to examine how well the
MCG3 method works when the spin–orbit and core
correlation effects are unknown or the core correla-
tion is not well accounted for by the simple formula

w xof Ref. 7 . To analyze this we define a ‘minimal’
MCG3 method, denoted MMCG3, in which the
spin–orbit and core correlation terms are omitted
Ž � 4 .and the c are re-optimized . The coefficients arei

given in the second row of Table 1, and the mean
errors are given in Table 2. The MUE and RMSE for
MMCG3 are approximately the same as for G3.

We note that the 49 molecules considered here
Žhave 113 bonds counting a double or triple bond as

.one bond . Thus the mean unsigned error of 0.90
kcalrmol in atomization energies corresponds to a
mean unsigned error of only 0.39 kcalrmol in bond
energies.

We conclude that one can obtain higher accuracy
than the G3 method for potential surfaces and ther-
mochemistry of molecules containing first- and sec-
ond-row atoms by using a method that dissociates

Žproperly so it may be used for continuous potential

.energy surfaces but which requires only about half
as much computer time as G3.
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