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We present a new method for extrapolating correlated electronic structure calculations based on correlation-
consistent polarized double-ú and triple-ú basis sets for calculation of molecular energies (atomization energies).

1. Introduction

Advances in computational sciences as well as the develop-
ment of new algorithms are making it possible to carry out ab
initio electronic structure calculations on small systems with
errors approaching the accuracy of experimental measurements
and with even better accuracy than experiment in a small but
rapidly growing number of cases. Nevertheless, we are still far
from being able to make reliable quantitative predictions based
on ab initio calculations for large and even medium-sized
systems. Even though in theory the algorithms are applicable
to any system despite its size, the computational resources
required for carrying out such calculations for medium- and
large-size systems are beyond the scope of available technology,
and for large systems we can assume that this situation will
continue for a long time. Thus, it is necessary to develop
methods that can be applied to medium- and large-sized systems
with a reduced computational cost.

The two major sources of error in an ab initio calculation of
molecular energies are the truncation of the one-electron basis
set and the truncation of the number of excitations or configura-
tions used for treating correlation energies. In principle, one
could calculate the energy of a system of interest using a
relatively small basis set and including a reduced number of
configurations or excitation operators in the calculation of the
correlation energy, and then improve both the basis set and the
configuration or excitation space until convergence is achieved.
This convergence could be measured as the difference between
the approximate calculation and the exact solution to the
Schrödinger equation, namely a full configuration interaction
(FCI) calculation using an infinite basis set. This combination
is called complete configuration interaction (CCI). However,
for most systems of interest, the computational cost of either
FCI or CCI makes them impossible. One promising way to
circumvent this difficulty is to calculate the first few terms in
a sequence of improving calculations and use these data to
extrapolate to the CCI limit. In the present paper we propose a
new set of semiempirical methods designed to do this as
accurately as possible. Four recent reviews may be consulted
for a summary of available methods for extrapolation.3-6 The
developments reported in the present paper were motivated by
two of the previous extrapolation methods, namely the scaling
all correlation (SAC) method5-9 introduced by Gordon and one
of the authors and the ab initio infinite basis (IB) methodl0,11

discussed recently. We note that the SAC method is itself based
on the earlier scaling external correlation (SEC) method6,12 of
Brown and one of the authors, and the IB method is based on

earlier work4,13-15 extrapolating correlation-consistent basis sets.
In fact, the systematic convergence4,13-17 of correlation-
consistent basis sets18,19 is believed to be a key ingredient in
the success of the method proposed here.

Section 2 presents some useful notation. Section 3 uses this
notation to describe all methods considered in this paper,
including the new extrapolation method, which we call the multi-
coefficient correlation method (MCCM).

2. Notation

Throughout this paper we will use the pipe “|” to represent
the energy difference either between two one-electron basis sets
B1 and B2 or between two many-body levels L1 and L2, e.g.,
Møller-Plesset second-order perturbation theory and Hartree-
Fock theory. The energy difference between two basis sets will
be represented as

where L is a particular electronic structure method and B1 is
smaller than B2. The energy change that occurs upon increasing
the treatment of the correlation energy will be represented by

where L1 is a lower level of theory than L2 and B is a common
basis set. Finally, the change in energy increment due to
increasing the level of the treatment of the correlation energy
with one basis set as compared to the increment obtained with
a smaller basis set will be represented as

All new calculations in this paper are based on three
correlation-consistent basis sets,18,19 namely cc-pVDZ, aug′′-
cc-pVDZ (we use the double prime notation to denote that
diffuse functions have been omitted on hydrogen and that the
diffuse subshell corresponding to the highest angular momentum
has been omitted for the heavy atoms, i.e., omitting the diffuse
d function from the aug′-cc-pVDZ20 basis set), and cc-pVTZ.
Since we restrict ourselves to only three basis sets, no confusion
can result from a shorthand notation, and we call these pDZ,
pDZ+, and pTZ, respectively. In addition, in some cases we
will compare to previous calculations based on Pople-type basis
sets such as 6-311G** which are explained elsewhere.21

The new methods, explained in section 3, will have names
like MCSAC-L, MCCM-L, and MCCM-L2;L1. The energies

∆E(L/B2|B1) ≡ E(L/B2) - E(L/B1) (1)

∆E(L2|L1/B) ≡ E(L2/B) - E(L1/B) (2)

∆E(L2|L1/B2|B1) ≡ E(L2/B2) - E(L1/B2) -
[E(L2/B1) - E(L1/B1)] (3)
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in these methods consist of sums of terms, most of which have
the form of eq 1, 2, or 3.

We will use standard abbreviations for electronic structure
methods. All new calculations in this paper are based on the
following methods:In addition, in some cases we will compare

to previous calculations based on the QCISD(T)24 method. This
denotes quadratic configuration interaction with single and
double excitations plus two quasiperturbative terms involving
triple excitations. Thus, in formulas, L, L1, L2, and L3 denote
one or another of HF, MP2, MP4D, MP4SDQ, and so forth.

A critical element in what follows will be the idea of a
sequenceof correlated calculations. We will define two
sequences: the MP sequence and the CC sequence. The MP
sequence consists of L0 ) HF, L1 ) MP2, L2 ) MP4D, L3 )
MP4SDQ, and L4 ) MP4; and the CC sequence consists of L0

) HF, L1 ) MP2, L2 ) CCSD, and L3 ) CCSD(T). Note that
if one performs a calculation of the energy by any of the
methods in a sequence, the energy for each of the lower levels
in the sequence is also available for no additional cost. Thus,
for example, if one asks theGaussian94program25 to carry out
a CCSD calculation, it also writes the HF and MP2 energies
since these are calculated as intermediate steps in a CCSD
calculation.

All ab initio calculations considered in this paper are frozen-
core methods. When one uses such methods, FCI means frozen-
core, full-valence configuration interaction, and CCI means
frozen-core, complete-valence configuration interaction. The
assumption implicit in using frozen-core calculations is that core
energies cancel out in calculating bond energies, atomization
energies, barrier heights, and other potential energy surface
features. This is not perfectly correct;26 therefore, we will add
in the core-correlation energy by the method described by two
of the current authors which is described elsewhere.27 (This
method is parametrized for molecules containing H, Li, Be, B,
C, N, O, F, Al, Si, P, S, and Cl, and includes both core-core
and core-valence correlation contributions.)

3. Methods

Section 3.1 reviews the SAC5-9 and ab initio IB10,11methods
in terms of the notation introduced above, as motivation for
the new methods. It also introduces the new empirical infinite-
basis method (EIB). Section 3.2 presents the new set of MCSAC
and MCCM methods. Section 3.3 summarizes the Gaussian-1
and Gaussian-2 (G1 and G2) methods in terms of the notation
of section 2, for comparison purposes.

3.1. SAC, IB, and EIB. The SAC method may be written

where, in the original notation,6-9 the coefficientc1 was written
as 1/F, whereF is a parameter. The value ofF, or equivalently
c1, is determined by comparison to experimental data.6-9 In the
present formulation of the SAC method we explicitly include
the spin-orbit and core-correlation contributions to the energy,
ESO andECC. The formulation of the SAC method given in ref
9 includes theESOterm, but not theECC term, and even earlier6-8

applications neglect bothESOandECC. Therefore, caution should
be taken when making a direct comparison between the
formulation and results given here and those given in earlier
papers.

The ab initio IB method may be written

where, in the original notation,10 with B1 ) pDZ and B2)
pTZ, c1 is given by 3R/(3R-2â) andc2 is given by 3â/(3â-2â),
where R and â are parameters. The values ofR and â, or
equivalentlyc1 andc2, were determined10 by comparison of the
first four terms of eq 5 to ab initio estimates of the infinite-
basis-set limit of correlation method L.

The empirical infinite-basis (EIB) method, introduced here,
is defined to have the same form as eq 5, but now the
coefficients are fit to experimental energy differences, such as
atomization energies.

Notice that the SAC method and the EIB method, by virtue
of being fit to experimental data, represent an attempt to
extrapolate to the CCI limit, whereas the ab initio IB method
attempts to reach the infinite-basis limit for a given electron
correlation level.

3.2. MCSAC and MCCM. The overall methodology for
SAC is to scale all of the correlation energy that comes from a
given level of correlation energy treatment, but using a single
basis. However, the different components of the correlation
energy may need different scaling factors. For example, using
MP4D theory and the pDZ basis set, we can write

wherec1 andc2 are constants. In general, we define the multi-
coefficient SAC method (MCSAC) for electron correlation level
Ln and basis B as

where the zeroth level, L0, is HF theory, and L1, L2, ... are the
correlated members of the sequence leading up to level Ln. These
sequences are defined in section 2. Implicit in both SAC and
MCSAC is the assumption that the error in the unextrapolated
calculation is primarily in the correlation energy (as opposed
to the Hartree-Fock energy). This is clearly an assumption,
but it is not unreasonable since the correlation energy converges
more slowly than the HF energy as one increases the basis set.

Clearly one can combine the MCSAC and IB methods.
Furthermore, we can put variable coefficients on all terms, even
the first one. We will call this the multi-coefficient correlation

E(IB-L/B2|B1) ) E(HF/B1) + c1∆E(HF/B2|B1) +
∆E(L|HF/B1) + c2∆E(L|HF/B2|B1) + ESO + ECC (5)

E(MCSAC-MP4D/pDZ)) E(HF/pDZ) +
c1∆E(MP2|HF/pDZ) + c2∆E(MP4D|MP2/pDZ)+

ESO + ECC (6)

E(MCSAC-Ln/B) ) E(HF/B) + ∑
m)1

n

cm∆E(Lm|Lm-1/B) +

ESO + ECC (7)

HF Hartree-Fock21

MP2 Møller-Plesset (MP) perturbation theory,
second order21

MP4D MP perturbation theory, fourth order,
with double excitations21

MP4SDQ MP perturbation theory, fourth order,
with single, double, and quadruple excitations21

MP4 full fourth-order MP perturbation theory, i.e.,
MP4SDQ plus triple excitations21

CCSD coupled-cluster theory with single and
double excitations22

CCSD(T) CCSD plus two quasiperturbative terms involving
triple excitations23

E(SAC-L/B) ) E(HF/B) + c1∆E(L|HF/B) +
ESO + ECC (4)
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method (MCCM). For example

wherec1 throughc6 are constants.
The coefficients and the corresponding energy differences

can be visualized with Figure 1. The first circle representsE(HF/
pDZ); the vertical lines represent level improvements (e.g.,
∆E(MP2|HF/ pDZ)), and the horizontal lines represent basis
set improvements (e.g.,∆E(MP2|HF/pTZ|pDZ)). Deleting the
last row of the CC tree yields the tree corresponding to eq 8;
comparing the CC tree to eq 8 should make the notation obvious.
Equation 8 and Figure 1 involve rectangular arrays of circles;
these can be called Colorado methods since Colorado is a perfect
rectangle.

It is also useful to consider diagrams like Figure 2, which
are rectangular with a corner missing, like Utah. For example,

We hope the above examples have made the methods and
the notation clear. We can summarize the methods more

formally as follows:

and

By definitionυ g n + 1. Note that in this paper, B1 is always
pDZ, and B2 is always pTZ.

We also consider adding a correction for diffuse functions:

This is a New Mexico method.
3.3. G1 and G2.In Gaussian-1 (G1) theory,28 one directly

sums the basis set and correlation energy increments without
scaling, and then one adds two terms, together called the high-
level correction, with empirical coefficients. The total G1 energy
may be written as

whereE(PDG1) is the properly dissociating contribution to the
G1 energy,

andnR andnâ are the number ofR andâ valence electrons (by
definition nR g nâ). Note that the last term of eq 13 always
cancels out in observable energy differences (such as bond
energies), and so it is irrelevant for our purposes. Thus we
consider the G1 method to be a one-parameter theory.

The term involvingnR - nâ in eq 13 is actually problematical.
Consider, for example, the potential energy curve of C12. At
the equilibrium internuclear distance,nR - nâ ) 0, but for each
separated atom,nR - nâ ) 1. Thus, somewhere along the
potential curve, as C12 is dissociated,nR - nâ must change from
0 to 2. For this reason, G1 and G2 cannot be used to calculate
globally continuous potential energy surfaces. The problem is
similar, but not precisely the same as, violating size consistency;
we call it the problem of improper dissociation. However,
removing thenR - nâ term greatly deteriorates the accuracy;
this will be illustrated in a later section where we give mean
errors for the properly dissociating Gaussian-2 (PDG2) and full
G2 (denoted simply G2).

Figure 1. Coefficient trees for MCCM-MP4 and MCCM-CCSD(T).
Coefficient trees for other symmetric MCCM methods (Colorado
methods) are obtained by deleting rows successively from the bottom.
(left) MP tree; (right) CC tree.

Figure 2. Coefficient tree for asymmetric MCCM-MP4;MP2 and
MCCM-CCSD(T);MP2. Coefficient trees for other asymmetric MCCM
methods (Utah methods) are obtained by deleting rows successively
from the bottom. (left) MP tree. (right) CC tree.

E(MCCM-CCSD)) c1E(HF/pDZ) +
c2∆E(HF/pTZ|pDZ) + c3∆E (MP2|HF/pDZ) +

c4∆E(MP2|HF/pTZ | pDZ) + c5∆E(CCSD|MP2/pDZ)+
c6∆E (CCSD|MP2/pTZ|pDZ) + ESO + ECC (8)

E(MCCM-CCSD; MP2)) c1E(HF/pDZ) +
c2∆E(HF/pTZ|pDZ) + c3∆E (MP2|HF/pDZ) +

c4∆E(MP2|HF/pTZ|pDZ) + c5∆E(CCSD|MP2/pDZ)+
ESO + ECC (9)

E(MCCM-Ln) ) c1E(HF/B1) + c2∆E(HF/B2|B1) +

∑
m)1

n

c2m+2∆E(Lm|Lm-1/B2|B1) +

∑
m)1

n

c2m+1∆E(Lm|Lm-1/B1) + ESO + ECC (10)

E(MCCM-Lυ;Ln) ) c1E(HF/B1) + c2∆E(HF/B2|B1) +

∑
m)1

n

c2m+2∆E(Lm|Lm-1/B2|B1) +

∑
m)1

n

c2m+1∆E(Lm|Lm-1/B1) +

∑
m)n+1

ν

cm+n+2∆E(Lm|Lm-1/B1) + ESO + ECC (11)

E(MCCM-Lυ;Ln;HF+) ) E(MCCM-Lυ;Ln) +
cn+υ+3∆E(HF/pDZ+|pDZ) (12)

E(G1) ) E(PDG1)+ c1(nR - nâ) + c2(nR + nâ) (13)

E(PDG1)) E[QCISD(T)/6-311G**] +
∆E(MP4/6-311+G** |6-311G**) +

∆E[MP4/6-311G**(2df)|6-311G**] (14)
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In Gaussian-2 (G2) theory,29 one adds additional terms to
the G1 energy. The total G2 energy can be written as

whereE(PDG2) denotes the properly dissociating contribution
to the total G2 energy,

Again all results in this paper are independent ofc2.
In addition to G1 and G2, with the original parameters we

consider a method we call G2′:

Since eq 18 includes spin-orbit and core-correlation energies
explicitly, we reoptimizec1 for the G2′ method.

4. Determination of Parameters

All methods are tested in this paper using a 49-molecule data
set presented previously.9 In addition, the new methods are

parametrized against this data set. The data set consists of all
molecules in the original G2 data set that do not have any metal
atoms. For each molecule the potential energy of atomization
is obtained by combining the best experimental estimate of the
heat of formation with an ab initio estimate of the vibrational
energy released upon dissociation. The resulting atomization
energies are the equilibrium dissociation energiesDe (this is
the same notation as used in spectroscopy, but remember that
in this paperDe refers to complete dissociation of all bonds to
form atoms). TheDe values are tabulated in ref 9, which also
gives references for the experimental data and details of the
vibrational energy calculations.

The structures of the 49 molecules were optimized at the
MP2/pDZ level of theory. The optimized geometries were then
used to calculate the HF and MP2 energies with the pDZ, pDZ+,
and pTZ basis sets, the MP4 and CCSD(T) energies and their
components (see section 2) with the pDZ and pTZ basis sets,
and the QCISD and CCD energies with the pDZ basis set.

The spin-orbit term was calculated using experimental data
as discussed in ref 9. The core-correlation energy was estimated
by the very simple methods of ref 27. This method is so simple
that it can be carried out on a hand-held calculator (or the back
of an envelope), and it (like theESO estimate) contributes
negligible cost. All coefficients for the new methods were then

TABLE 1: Parameters Optimized in This Work

methods c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

SAC-MP2/pDZ 1.2768
SAC-MP2/pTZ 1.0482
SAC-MP4D/pDZ 1.4205
SAC-MP4D/pTZ 1.1546
SAC-MP4SDQ/pDZ 1.4189
SAC-MP4SDQ/pTZ 1.1747
SAC-MP4/pDZ 1.3243
SAC-MP4/pTZ 1.0756
SAC-QCISD/pDZ 1.4257
SAC-CCD/pDZ 1.4690
SAC-CCSD/pDZ 1.4375
SAC-CCSD/pTZ 1.1915
SAC-CCSD(T)/pDZ 1.3542
SAC-CCSD(T)/pTZ 1.1100
EIB-MP2 0.9172 1.5328
EIB-MP4D 2.6023 1.1428
EIB-MP4SDQ 2.4282 1.4396
EIB-MP4 1.4401 1.3383
EIB-CCSD 2.5931 1.4326
EIB-CCSD(T) 1.8719 1.3256
MCSAC-MP4D/pDZ 1.3942 1.1341
MCSAC-MP4D/pTZ 1.1104 0.6460
MCSAC-MP4SDQ/pDZ 1.4167 1.4076 2.1571
MCSAC-MP4SDQ/pTZ 1.0579 1.5120 1.8980
MCSAC-MP4/pDZ 1.3112 2.2512 2.3410 2.8643
MCSAC-MP4/pTZ 1.0504 1.5680 1.8994 0.1483
MCSAC-CCSD/pDZ 1.4174 1.2403
MCSAC-CCSD/pTZ 1.1406 0.7433
MCSAC-CCSD(T)/pDZ 1.3055 1.7800 3.0180
MCSAC-CCSD(T)/pTZ 1.0513 1.2183 2.1835
MCCM-MP2 0.9971 1.6560 0.7718 2.6398
MCCM-MP4D 0.9893 1.7321 1.0640 1.2460 0.8177 0.1506
MCCM-MP4SDQ 0.9642 1.6869 1.0099 2.4717 0.4514 3.4843 0.9629 3.5916
MCCM-MP4 0.9893 1.4520 0.7228 2.5246 1.4028 4.7202 2.8677 4.8061 1.7804 7.8256
MCCM-CCSD 0.9703 1.6636 1.1206 1.7329 0.7127 2.6136
MCCM-CCSD(T) 0.9887 1.5377 1.0048 1.5208 1.0106 1.5695 1.7202 0.9124
MCCM-MP4D;MP2 0.9916 1.7056 1.0585 1.2314 0.7835
MCCM-MP4SDQ;MP2 0.9862 1.5824 1.0618 1.4209 0.8955 1.1224
MCCM-MP4;MP2 0.9803 1.1958 0.9559 1.9302 1.3053 1.7328 1.7792
MCCM-CCSD;MP2 0.9949 1.6872 1.1422 0.8323 1.0040
MCCM-CCSD(T);MP2 1.0002 1.4852 1.0026 1.1447 1.1869 2.1343
MCCM-CCSD(T);MP2;HF+ 1.0013 1.4127 0.3790 1.0173 1.0516 1.2159 2.1967
G2′ 2.2600

E(G2) ) E(PDG2)+ c1(nR - nâ) + c2(nR + nâ) (15)

E(PDG2)) E(PDG1)+
∆E[MP2/6-311+G(3df,2p)|6-311G(2df,p)] -

∆E[MP2/6-311+G(d,p)|6-311G(d,p)] (16)

E(G2′) ) E(PDG2)+ c1(nR - nâ) + ESO + ECC (17)
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optimized using linear regression against the data set of 49
accurateDe values. The optimized coefficients are given in Table
1.

All electronic structure information, optimized geometries,
electronic energies, and G2 energies for the 49 molecules and
9 atoms were obtained using the Gaussian9425 electronic
structure package.

5. Results

The mean signed error (MSE), mean unsigned error (MUE),
and root-mean-square error (RMSE) for all the nonparametrized
methods are given in Table 2. The nonparametrized methods
include the Gaussian-1 and Gaussian-2 theories without the
corresponding higher-level correction factors, denoted PDG1
and PDG2 to denote proper dissociation. The MSE, MUE, and
RMSE for all the parametrized methods are given in Table 3.
The computational cost in Tables 2 and 3 is the mean CPU
time on an IBM SP computer for the six largest molecules,
H2CCH2, H3CCH3, H3COH, H2NNH2, Si2H6, and CH3SH,
relative to the mean CPU time for an MP2/pDZ calculation on
these same six molecules. Computer times for smaller jobs may
have significant components of overhead and should not be
interpreted too closely.

6. Discussion

Comparing the multilevel, multi-basis-set PDG2 results with
the single-level single-basis-set calculations shows that MP2/
pTZ yields an MSE that is more than 1 kcal/mol better than
PDG2 and an MUE that is slightly better than PDG2. The MP2/
pTZ calculation has basically the same MSE and MUE as
PDG2.

Comparing the MSE columns of Tables 2 and 3 for PDG1,
PDG2, G1, and G2 we can see that adding the empirical
corrections to PDG1 and PDG2 reduces the MSE by ap-
proximately 8.2 kcal/mol for PDG1 and approximately 6.6 kcal/

mol for PDG2. In addition, the MUE is reduced by approxi-
mately 7.4 kcal/mol for PDG1 and approximately 5.4 kcal/mol
for PDG2.

The MUE and RMSE for G2 and G2′ are essentially the same.
The reoptimized value ofc1 is 2.26 and is very similar to the
original value, 2.31; therefore, we can see that the high-level
correction in G2 makes up for most of the spin-orbit and core-
correlation effects.

Comparing the one-parameter SAC methods with their non-
SAC counterparts shows that by simply scaling the correlation
energy one can significantly reduce the errors. The MCSAC
method further reduces the MUE and RMSE, but they require
no further work. The EIB methods further improve the MUE
and RMSE as compared to the MCSAC methods, but at the
cost of running two basis sets. We note, however, that the cost
of a second basis set is almost negligible. For example, the cost
of calculating the six largest molecules with both pTZ and pDZ
basis sets at the CCSD(T) level is only 4% higher than carrying
out only the pTZ calculation. The relative cost increment is
somewhat higher (5-10%) for other levels but still almost
negligible.

The MCCM methods clearly outperform the corresponding
SAC, MCSAC, and EIB methods. In fact, the MCCM-CCSD(T)
method yields MSEs, MUEs, and RMSEs that are 0.1, 0.4, and
0.6 kcal/mol lower than G2. The major disadvantage to the
MCCM-CCSD(T) method is the expense. However, by using
the Utah strategy instead of the full Colorado strategy, we obtain
the MCCM-CCSD(T);MP2 method for which the values of
MSE, MUE, and RMSE are still slightly better than G2, but
the cost is only 60% of the cost of the G2 calculation. We note
that the MCCM methods achieve this better performance without
the high-level correction, and thus they do not suffer from
improper dissociation.

An important qualitative difference between Tables 2 and 3
is that the unparametrized methods show large negative mean
signed errors in the range-5 to-90 kcal/mol inDe. In contrast,
the parametrized methods all have much smaller mean signed
errors from+0.1 kcal/mol to-3 kcal/mol.

Table 4 shows the results obtained by the IB method of ref
10. This method gives much larger deviations from experiment
than the new EIB methods. This is not surprising since the IB
methods were not designed to yield experimental accuracy; they
are designed to remove only the part of the error arising from
an incomplete one-electron basis set.

An important aspect of Table 1 is that all coefficients are
positive. We wrote the trees in such a way that positive
coefficients correspond to physical fits. We did find that
including certain combinations of methods, e.g., including both
MP4DQ and MP4SDQ, sometimes gave unphysical fits, but all
methods presented here have only positive coefficients. We
attempted to include diffuse basis functions by using HF/pDZ+
and MP2/pDZ+ calculations. Including diffuse character at the
MP2 level does not reduce the error and yields unphysical
coefficients. However, adding diffuse character at the HF level
helps to reduce the error and gives a physical fit when CCSD(T)
energies are included.

The performance vs cost tradeoff of all the MCSAC,
EIB, and MCCM methods is shown in Figure 3. The nine
methods that lie below the line are our recommended methods,
namely MCSAC-MP4SDQ/pDZ, MCSAC-MP4/pDZ, MCCM-
MP4;MP2, MCCM-CCSD;MP2, MCCM-CCSD(T);MP2, MC-
CM-CCSD(T);MP2;HF+, MCCM-CCSD, MCCM-MP4, and
MCCM-CCSD(T). The× in Figure 3 denotes both G2 and G2′.

TABLE 2: Mean Signed Errors, Mean Unsigned Errors,
and rms Errors for the Nonparametrized Methods As
Compared to the Accurate Dissociation Energies and the
Corresponding Computational Cost for Each Method

method
MSE

(kcal/mol)
MUE

(kcal/mol)
RMSE

(kcal/mol)
computational

costa

PDG1 -9.07 9.07 10.15 21
PDG2 -6.66 6.66 7.40 29
HF/pDZ -90.10 90.10 99.08 0.5
HF/pDZ+ -89.57 89.57 98.65 0.5
HF/pTZ -84.12 84.12 92.54 6.8
MP2/pDZ -21.65 21.65 24.30 1.0
MP2/pDZ+ -20.62 20.62 23.26 0.9
MP2/pTZ -5.40 6.74 8.53 14
MP4D/pDZ -27.27 27.27 30.25 1.4
MP4D/pTZ -11.95 11.95 14.05 20
MP4SDQ/pDZ -27.22 27.22 30.04 1.4
MP4SDQ/pTZ -12.96 12.96 14.77 20
MP4/pDZ -22.91 22.91 25.19 2.0
MP4/pTZ -6.45 6.45 7.47 42
QCISD/pDZ -27.31 27.31 30.22 2.3
CCD/pDZ -29.36 29.36 32.58 2.5
CCSD/pDZ -27.84 27.84 30.85 3.1
CCSD/pTZ -13.78 13.78 15.79 31
CCSD(T)/pDZ -23.99 23.99 26.55 3.9
CCSD(T)/pTZ -8.50 8.50 9.62 105

a Computational cost is the mean CPU time on an IBM SP computer
for the six largest molecules, H2CCH2, H3CCH3, H3COH, H2NNH2,
Si2H6, and CH3SH, relative to the mean CPU time (66 s) for an MP2/
pDZ calculation on the same computer for the same six molecules.
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Figure 4 gives an enlarged view of the nine recommended
methods with a linear (rather than logarithmic) ordinate.

It is interesting to compare the parametrized and unparam-
etrized methods. For this purpose we center attention on the
unparametrized MP2/pTZ method (although the MP4/pTZ
method has a slightly smaller mean unsigned error, it is 3 times
more costly). The MCSAC-MP4SDQ/pDZ calculation gives a
mean unsigned error of 5.12 kcal/mol with an average cost of
94 s, whereas MP2/pTZ gives a mean unsigned error of 6.74
kcal/mol with a cost of 893 ssthe error for the unparametrized

method is 1.3 times larger despite being 9.5 times more
expensive. Similarly the MCCM-MP4;MP2 method gives a
mean unsigned error 4.9 times smaller than MP2/pTZ at a cost
that is only 1.1 times larger. Additional comparisons can be
made for the remaining seven recommended methods, and these
comparisons confirm the good performance of the MCCM
methods.

As an additional check of accuracy and timing the MCCM
methods we have calculated the zero-point-exclusive atomization
energy of benzene with seven of the nine recommended methods

TABLE 3: Mean Signed Errors, Mean Unsigned Errors, and rms Errors for the Parametrized Methods as Compared to the
Accurate Dissociation Energies and the Corresponding Computational Cost for Each Method

method parameters MSE (kcal/mol) MUE (kcal/mol) RMSE (kcal/mol) computational costa

G1 1 -0.89 1.64 2.10 21
G2 1 -0.09 1.22 1.69 29
G2′ 1 -0.24 1.21 1.68 29

SAC-MP2/pDZ 1 -2.70 9.47 11.64 1.0
SAC-MP2/pTZ 1 -1.61 5.88 7.40 14
SAC-MP4D/pDZ 1 -0.85 5.10 7.74 1.4
SAC-MP4D/pTZ 1 -0.80 4.30 6.68 20
SAC-MP4SDQ/pDZ 1 -0.88 5.04 7.14 1.4
SAC-MP4SDQ/pTZ 1 -0.52 3.72 5.42 20
SAC-MP4/pDZ 1 -1.11 5.65 6.97 2.0
SAC-MP4/pTZ 1 -0.58 2.71 3.68 42
SAC-QCISD/pDZ 1 -0.58 4.35 6.48 2.3
SAC-CCD/pDZ 1 -0.88 5.49 8.23 2.5
SAC-CCSD/pDZ 1 -0.60 4.55 6.85 3.1
SAC-CCSD/pTZ 1 -0.31 3.97 5.37 31
SAC-CCSD(T)/pDZ 1 -0.58 4.46 6.00 3.9
SAC-CCSD(T)/pTZ 1 -0.18 1.99 2.92 105

EIB-MP2 2 -0.43 4.97 6.40 15
EIB-MP4D 2 -1.03 3.40 5.34 21
EIB-MP4SDQ 2 -0.77 3.58 4.87 21
EIB-MP4 2 -0.27 2.01 2.98 44
EIB-CCSD 2 -0.76 3.82 4.94 34
EIB-CCSD(T) 2 -0.19 1.49 1.97 109

MCSAC-MP4D/pDZ 2 -1.03 5.48 7.39 1.4
MCSAC-MP4D/pTZ 2 -0.95 3.62 5.26 20
MCSAC-MP4SDQ/pDZ 4 -0.93 5.12 7.05 1.4
MCSAC-MP4SDQ/pTZ 4 -0.30 2.26 3.16 20
MCSAC-MP4/pDZ 6 -0.53 4.49 5.96 2.0
MCSAC-MP4/pTZ 6 -0.28 2.23 3.15 42
MCSAC-CCSD/pDZ 2 -0.75 4.76 6.68 3.1
MCSAC-CCSD/pTZ 2 -0.56 2.87 3.70 31
MCSAC-CCSD(T)/pDZ 4 -0.15 4.07 5.56 3.9
MCSAC-CCSD(T)/pTZ 4 -0.04 1.67 2.31 105

MCCM-MP2 4 -0.71 3.47 4.38 15
MCCM-MP4D 6 -0.45 2.32 3.67 21
MCCM-MP4SDQ 8 -0.38 1.95 2.66 21
MCCM-MP4 10 0.05 1.33 1.73 44
MCCM-CCSD 6 -0.24 1.53 2.07 34
MCCM-CCSD(T) 8 0.02 0.81 1.12 109

MCCM-MP4D;MP2 5 -0.46 2.40 3.69 15
MCCM-MP4SDQ;MP2 6 -0.41 2.39 3.54 15
MCCM-MP4;MP2 7 -0.23 1.89 2.95 15
MCCM-CCSD;MP2 5 -0.25 1.94 2.74 17
MCCM-CCSD(T);MP2 6 0.05 1.01 1.40 17

MCCM-CCSD(T);MP2;HF+ 7 0.10 0.95 1.29 18

a Computational cost is the mean CPU time on an IBM SP computer for the six largest molecules, H2CCH2, H3CCH3, H3COH, H2NNH2, Si2H6,
and CH3SH, relative to the mean CPU time (66 s) for an MP2/pDZ calculation on the same computer for the same six molecules.

TABLE 4: Mean Signed Errors, Mean Unsigned Errors, and Rms Errors for IB Methods of Ref 10

method parameters
MSE

(kcal/mol)
MUE

(kcal/mol)
RMSE

(kcal/mol)
computational

costa

IB-MP2 2 3.75 6.37 7.97 15
IB-CCSD 2 -6.85 7.00 9.44 34
IB-CCSD(T) 2 -0.70 2.21 3.09 109

a Computational cost is the mean CPU time on an IBM SP computer for the six largest molecules, H2CCH2, H3CCH3, H3COH, H2NNH2, Si2H6,
and CH3SH, relative to the mean CPU time (66 s) for an MP2/pDZ calculation on the same computer for the same six molecules.
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and G2. The unsigned errors and unsigned errors per bond are
given in Table 5. The experimentally based estimate of the zero-
point-exclusive atomization energy of benzene, 1368.40 kcal/
mol, was calculated from the experimental30 value of∆Hf

0
298

by the method described in ref 9. As can be seen from Table 5,
the error per bond for benzene for each of the methods is
comparable to the average error per bond over the 49 molecule
training set. (Benzene is not included in the training set.) Thus
the mean error per bond does not systematically deteriorate with
increasing system size. The computational costs for each method
relative to G2 are given in Table 5. The G2 calculation has
three correlation calculations (two MP4 calculations and one
QCISD(T) calculation) with large basis sets that scale asN7

whereN is the number of basis functions and that dominate the
computational cost for benzene. In contrast, the costs of the
MCCM methods in Table 5 for benzene are dominated by
calculations that either scale better than those in G2 or that scale
the same as G2 but use a smaller basis set. The computational
cost for an MCSAC-MP4SDQ/pDZ calculation is equivalent
to that for an MP4SDQ/pDZ calculation that scales asN;6 the
cost of an MCSAC-MP4/pDZ calculation is equivalent to that
for an MP4/pDZ calculation that scales asN7 but that uses a
smaller basis set than the MP4 calculations used in G2; and the

MCCM-CCSD calculation is dominated by the CCSD/pTZ
component which scales asN6. The computational costs for the
rest of the methods given in Table 5 are dominated by an MP2/
pTZ calculation that scales asN5. Therefore, because of the
improved scaling or because of the use of a smaller basis set
for the component of the calculation that scales as the highest
power of N, we are able to significantly cut the cost of
calculating larger molecules while maintaining very good
accuracy.

7. Concluding Remarks

Motivated by the physical ideas of scaling correlation energy
and extrapolating to an infinite basis set, we proposed an
empirical multi-coefficient correlation method (MCCM) for
simultaneouslyextrapolating both the various components of
the correlation energy and the basis set. We have parametrized
this idea for various levels of treating electron correlation with
polarized double and triple-ú basis sets and an augmented
polarized double-ú basis set. We obtain excellent agreement with
experiment at reasonable cost without using the improperly
dissociating high-level correction of Gaussian-1 and Gaussian-2
theory. Thus the method is well suited for calculating potential
energy surfaces.

TABLE 5: Unsigned Errors (kcal/mol) of MCCM Methods Compared to Experiment for Benzene

method unsigned errora
unsigned error

per bondb
mean unsigned
error per bondc

computational
costd

G2 6.97 0.58 0.53 1.00
MCSAC-MP4SDQ/pDZ 10.31 0.86 2.22 0.02
MCSAC-MP4/pDZ 11.82 0.99 1.95 0.05
MCCM-MP4;MP2 11.99 1.00 1.04 0.06
MCCM-CCSD;MP2 16.14 1.35 0.84 0.04
MCCM-CCSD(T);MP2 9.03 0.75 0.44 0.09
MCCM-CCSD(T);MP2;HF+ 9.70 0.81 0.41 0.09
MCCM-CCSD 5.61 0.46 0.66 0.54

a Absolute value of error for benzene as compared to experiment.b Unsigned error for benzene divided by the total number of bonds, 12 bonds,
in benzene. (Multiple bonds count as one bond.)c Sum of unsigned errors for the 49 values ofDe in the training set divided by the total number
of bonds, 113 bonds, in the training set. (Double and triple bonds count as one bond.)d Computational cost is the CPU time for benzene on an IBM
SP computer on a scale where the G2 calculation (3.0× 105 seconds) is taken as 1 unit.

Figure 3. Logarithm of mean unsigned error (mean absolute error) as a function of cost for G2 and G2′ and all EIB, MCSAC, and MCCM
methods. The cost is represented by the mean CPU time on an IBM SP computer for the six largest molecules, H2CCH2, H3CCH3, H3COH,
H2NNH2, Si2H6, and CH3SH. Squares: EIB; diamonds: MCSAC; triangles: MCCM-L; circles: MCCM-L2;L1;+: MCCM-CCSD(T);MP2;HF+;
×: G2 and G2′. Methods including triple excitations are indicated by filled symbols, and those without triple excitations are indicated by hollow
symbols.

Multi-Coefficient Correlation Method for Quantum Chemistry J. Phys. Chem. A, Vol. 103, No. 26, 19995135



Acknowledgment. This work was supported in part by the
U.S. Department of Energy, Office of Basic Energy Sciences.
M.L.S. acknowledges a fellowship from the Ministerio de
Educacio´n y Cultura of Spain, which has supported her work
at the University of Minnesota.

References and Notes

(1) Nyden, M. R.; Petersson, G. A.J. Chem. Phys. 1981, 75, 1843
(2) Brown, F. B.; Truhlar, D. G.Chem. Phys. Lett. 1985, 117, 307.
(3) Petersson, G. A.ACS Symp. Ser. 1998, 677, 237.
(4) Martin, J. M. L.ACS Symp. Ser. 1998, 677, 212.
(5) Blomberg, M. R. A.; Siegbahn, P. E. M.ACS Symp. Ser. 1998,

677, 197.
(6) Corchado, J. C.; Truhlar, D. G.ACS Symp. Ser. 712, in press.
(7) Gordon, M.; Truhlar, D. G.J. Am. Chem. Soc. 1986, 108, 5412.
(8) Rossi, I.; Truhlar, D. G.Chem. Phys. Lett. 1995, 234, 64.
(9) Fast, P. L.; Corchado, J. C.; Sa´nchez, M. L.; Truhlar, D. G. J. Phys.

Chem. A1999, 103, 3139.
(10) Truhlar, D. G.Chem. Phys. Lett. 1998, 294, 45.
(11) Chuang, Y.-Y.; Truhlar, D. G. J. Phys. Chem. A1999, 103, 651.

Fast, P. L.; Sa´nchez, M. L.; Truhlar, D. G.J. Chem. Phys., in press.
(12) Brown, F. B.; Truhlar, D. G.Chem. Phys. Lett. 1985, 117, 307.
(13) Woon, D. E.; Dunning, T. H., Jr.J. Chem. Phys. 1993, 99, 1914.
(14) Martin, J. M. L.; Taylor, P. R.Chem. Phys. Lett. 1996, 248, 336.
(15) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.;

Olson, J.; Wilson, A. K.Chem. Phys. Lett. 1998, 286, 243.
(16) Feller, D.J. Chem. Phys. 1992, 96, 6104.

(17) Feller, D.; Peterson, K. A.J. Chem. Phys. 1998, 108, 154.
(18) Dunning, T. H. Jr. J. Chem. Phys. 1989, 90, 1007.
(19) Woon, D. E.; Dunning, T. H. Jr.J. Chem. Phys. 1993, 98, 1358.
(20) Del Bene, J. E.J. Phys. Chem.1993, 97, 107.
(21) Hehre, W. J.; Radom, L.; Schleyer, P.v. R.; Pople, J. A. Ab Initio

Molecular Orbital Theory; Wiley: New York, 1986.
(22) Purvis, G. D.; Bartlett, R. J.J. Chem. Phys. 1982, 76, 1910.
(23) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M.

Chem. Phys. Lett. 1989, 157, 479.
(24) Pople, J. A.; Head-Gordon, M.; Raghavachari, K.J. Chem. Phys.

1987, 87, 5968.
(25) Gaussian94(Revision E.2); Frisch, M. J.; Trucks, G. W.; Schlegel,

H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.;
Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Lahm,
M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.;
Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala,
P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts,
R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart,
J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.:
Pittsburgh, PA, 1995.

(26) Woon, D. E.; Dunning, T. H. Jr.J. Chem. Phys. 1995, 103, 4572.
(27) Fast, P. L.; Truhlar, D. G.J. Phys. Chem. A1999, 103, 3802.
(28) Pople, J. A.; Head-Gordon, M.; Fox, D. J.; Raghavachari, K.;

Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622.
(29) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A.J.

Chem. Phys. 1991, 94, 7221.
(30) Petersson, G. A.; Malick, D. K.; Wilson, W. G.; Ochterski, J. W.;

Montgomery, J. A.; Frisch, M. J.J. Chem. Phys.1998, 109, 10570.
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