Gaussian-2 theory using reduced Møller–Plesset orders

Larry A. Curtiss Chemical Technology Division/Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

Krishnan Raghavachari AT&T Bell Laboratories, Murray Hill, New Jersey 07974

John A. Pople Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvannia 15213

(Received 18 September 1992; accepted 1 October 1992)

Two variations of Gaussian-2 (G2) theory are presented. In the first, referred to as G2 (MP2) theory, the basis-set-extension energy corrections are obtained at the 2nd order Møller-Plesset (MP2) level and in the second, referred to as G2(MP3) theory, they are obtained at the MP3 level. The methods are tested out on the set of 125 systems used for validation of G2 theory [J. Chem Phys. 94, 7221 (1991)]. The average absolute deviation of the G2(MP2) and G2(MP3) theories from experiment are 1.58 and 1.52 kcal/mol, respectively, compared to 1.21 kcal/mol for G2 theory. The new methods provide significant savings in computational time and disk storage.

I. INTRODUCTION

In a previous paper¹ we presented a general theoretical procedure referred to as Gaussian-2 (G2) theory, based on ab initio molecular orbital theory, for the computation of total energies of molecules at their equilibrium geometries. G2 theory uses the 6-311G(d,p) basis set and corrections for several basis set extensions. Treatment of correlation is by Møller-Plesset (MP) perturbation theory and quadratic configuration interaction (QCISD). The final total energies obtained in G2 theory are effectively at the QCISD(T)/6-311G+G(3df,2p) level, making certain assumptions about additivity of the corrections. These additivity assumptions are supported by a recent full study.² G2 theory was tested on a total of 125 energies (dissociation energies, ionization energies, electron affinities, and proton affinities) having well-established experimental values and found to have an average absolute deviation from experiment of 1.21 kcal/mol. In subsequent work it has proved to be very useful in assessing thermochemical data of a large number of species for which less reliable experimental information is available.³

In this paper we present two variations of G2 theory which provide substantial savings in computational time and disk storage. In the first, referred to as G2(MP2)theory, the basis-set-extension corrections are obtained at the MP2 level and in the second, referred to as G2(MP3)theory they are obtained at the MP3 level. These new methods are tested out on the same set of 125 systems used for validation of G2 theory. In Sec. II the theoretical methods used are described. In Sec. III the G2(MP2) and G2(MP3) energies are presented and compared with experiment and the original G2 theory.

II. DESCRIPTION OF THE THEORETICAL METHOD

G2 theory has been described in detail in Ref. 1. It is based on MP2=FU/6-31G(d) geometries using all electrons (MP2=FU). Energies are calculated at the

MP4SDTQ/6-311G(d,p) level (complete fourth-order MP perturbation) with corrections from higher level calculations. These include the following terms:

(1) A correction for diffuse functions is evaluated as

 $\Delta E(+) = E[MP4/6-311+G(d,p)]$

-E[MP4/6-311G(d,p)].

(2) A correction for higher polarization on nonhydrogen atoms is evaluated as

 $\Delta E(2df) = E[MP4/6-311G(2df,p)] - E[MP4/6-311G(d,p)].$

(3) A correction for inclusion of a third d-function on nonhydrogen atoms and a second p-function on hydrogens

$$\Delta = E[MP2/6-311 + G(3df,2p)]$$

- E[MP2/6-311G(2df,p)]
- E[MP2/6-311+G(d,p)]
+ E[MP2/6-311G(d,p)].

is obtained from the relationship

(4) A correction for correlation effects beyond fourth order perturbation theory is evaluated as

$$\Delta E(\text{QCI}) = E[\text{QCISD}(\text{T})/6-311G(d,p)]$$
$$-E[\text{MP4}/6-311G(d,p)].$$

using the method of quadratic configuration interaction.⁴

(5) A higher level correction (HLC) to account for remaining basis set deficiencies is added. This is HLC $=An_{\beta}-Bn_{\alpha}$, where A=4.81 mhartree, B=0.19 mhartree, and n_{α} and n_{β} are the number of α and β valence electrons, respectively, with $n_{\alpha} \ge n_{\beta}$. The value of A was derived to give the zero mean deviation from experiment of the calculated atomization energies of 55 molecules having wellestablished experimental values.¹ The value of B is the

TABLE I. Total G2	2(MP2) energies	(in hartrees)
-------------------	-----------------	---------------

Species	Energy	Species	Energy	Species	Energy
H	-0.500 00	- H ₂ CO	-114.336 08	SH ⁺	- 397.902 80
Li	-7.432 22	$CH_{3}OH$	-115.531 81	$SH_2^+({}^2B_1)$	- 398.541 95
Be	-14.623 51	N_2	- 109.389 48	$SH_2^+({}^2A_1)$	- 398.455 72
В	24.602 72	N_2H_4		CIH ⁺	-459.864 87
С	-37.783 90	NO	-129.736 22	$C_2H_2^+$	-76.764 47
N	54.516 31	O ₂	- 150.142 08	$C_2H_4^+$	-78.025 53
0	-74.978 68	H_2O_2	-151.361 32	CO ⁺	u — 112.660 32
F	99.628 94	F_2	199.317 80	$N_2^{+2}\Sigma_g^+$	— 108.818 33 .
Na	- 161.846 17	CO ₂	-188.356 62	$N_2^+ {}^2\Pi_u$	- 108.777 87
Mg	199.646 20	Na ₂	-323.723 58	O ₂ ⁺	- 149.695 63
Al	-241.929 95	Si ₂	577.978 0 ⁵	P_2^+	-681.425 12
Si	-288.930 02	P_2	-681.810 96	S ₂ +	-795.112 81
P	- 340.813 87	S ₂	-795.452 17	Cl_2^+	-919.003 64
S	-397.646 99	$\overline{Cl_2}$	-919.425 73	CIF ⁺	- 558.931 16
Cl	-459.666.72	NaCl	-621.671 01	SC ⁺	-435.285 96
LiH	-8.021 79	SiO	364.214 01	C-	-37.824 66
BeH	- 15.194 67	CS	-435.705 58	0	-75.028 18
CH	38.411 70	SO	-472.819 30	F	-99.755 69
$CH_{2}({}^{3}B_{1})$	- 39.067 81	C10	- 534.744 16	Si ⁻	
$CH_2({}^1A_1)$		ClF	559.394 17	P ⁻	-340.834 13
CH	- 39.743 91	Si ₂ H ₆	- 581.660 94	S	- 397.719 64
CH	-40.409 66	CH ₃ Cl	-499.544 46	Cl-	-459.799 72
NH	- 55.140 03	CH ₃ SH	-438.141 23	CH ⁻	-38.451 38
NH_2	- 55.787 11	HOCI	- 535.397 72	CH_{2}^{-}	39.091 57
NH	-56.457 18	SO ₂	-548.007.09	CH ₃	-39.745 45
OH	- 75.640 92	Li ⁺	-7.235 84	NH ⁻	- 55.149 42
OH,	-76.330 01	Be ⁺	-14.276 39	NH ₂	-55.816 38
FH	- 100.347 04	\mathbf{B}^+	-24.302 04	OHÉ	- 75.709.97
SiH	-289.542 51	C^+	-37.374 43	SiH	-289.583 95
$SiH_2(^1A_1)$	-290.164 26	N ⁺	-53.985 97	SiH ₂	-290.199 00
$\operatorname{SiH}_2({}^3B_1)$	-290.127 03	O+	-74.483 83	SiH ₃	-290.820 96
SiH ₃	-290.770 07	F ⁺	-98.991 08	PH ⁻	- 341.456 82
SiH₄	-291.415 53	Na ⁺	-161.664 29	PH ₂	- 342.089 10
PH	- 341.423 31	Mg^+	- 199.364 08	HS ⁻	- 398.364 36
PH_2	-342.044 07	Al ⁺	-241.713 81	O_2^-	-150.157 53
PH	-342.674 23	Si ⁺	288.634 89	NO	- 129.731 45
SH		\mathbf{P}^+	-340.432 22	CN ⁻	-92.725 92
SH-	- 398.924 08	S+	-397.276 39	PO-	-416.050 95
CIĤ	-460.331 62	Cl+	-459.196 74	PO	-416.015 14
Li ₂	-14.906 40	CH_4^+	- 39.943 98	S ₂	
LiF	-107.280 92	NH ⁺	- 56.082 58	Cl ₂	-919.511 32
C_2H_2	-77.184 08	OH^{+}	-75.164 95	\tilde{NH}_{4}^{+}	- 56.779 88
$\tilde{C_{2}H_{4}}$	-78.414 31	OH_{2}^{+}	-75.865 72	OH_3^+	-76.589 90
C ₂ H ₆	-79.628 93	FH ⁺		$C_2 H_3^+$	-77.428 97
ĊŇ	-92.580 35	SiH₄ ⁺	-291.011 91	SiH	-291.660 13
HCN	-93.282 49	PH ⁺	-341.054 62	PH ⁺	- 342.971 97
CO	-113.175 40	\mathbf{PH}_{2}^{+}		SH ⁺	- 399.192 57
нсо	-113.695 97	PH ⁺	342.312 68	CIH ₂ +	-460.544 57
		3		2	

same as was used in G1 theory, 5,6 where it was the error in the hydrogen atom energy.

(6) Finally, the energy
$$E_0$$
 is obtained by adding the zero-point correction, obtained from scaled (0.893) HF/ 6-31G* frequencies.

The resulting G2 energy is given by

$$E_0 = E[MP4/6-311G(d,p)] + \Delta E(+) + \Delta E(2df) + \Delta E(QCI) + HLC + E(ZPE).$$
(1)

In G2(MP2) theory the basis set extension corrections
in steps
$$(1)-(3)$$
 are replaced by a single correction ob-
tained at the MP2 level

$$\Delta_{MP2} = E[MP2/6-311 + G(3df,2p)] - E[MP2/6-311G(d,p)].$$
(2)

The total G2(MP2) energy is thus given by

$$E_0 = E[QCISD(T)/6-311G(d,p)] + \Delta_{MP2} + HLC + E(ZPE).$$
(3)

The value of A used in the HLC for G2(MP2) theory was chosen to give the smallest average absolute deviation from experiment for the entire set of 125 energies. This turns out to be the same as that used for the HLC in G2 theory, i.e.,

J. Chem. Phys., Vol. 98, No. 2, 15 January 1993

TABLE II. Total G2(MP3)	energies ((in hartrees))
-------------------------	------------	---------------	---

Species	Energy	Species	Energy	Species	Energy
H	0.500 00	H ₂ CO	-114.338 11	SH ⁺	- 397.906 88
Li	-7.432 22	CH ₃ OH	-115.533 43	$SH_2^+({}^2B_1)$	398.546 67
Be	14.622 89	N_2	- 109.392 04	$SH_2^+({}^2A_1)$	-398.461 12
В	-24.602 45	N_2H_4	-111.679 14	ClH ⁺	-459.871 29
с	-37.784 32	NO	- 129.738 58	$C_2H_2^+$	-76.766 32
N	54.517 47	O ₂	150.146 21	$C_2H_4^+$	-78.027 65
0	-74.981 32	H_2O_2	-151.363 03	CO.+	-112.662 42
F	-99.631 94	F_2	- 199.321 29	$N_2^{+ 2} \Sigma_{\sigma}^{+}$	- 108.821 44
Na	- 161.846 17	CO2	- 188.361 05	$N_2^+ {}^2\Pi u$	-108.780 32
Mg	- 199.645 65	Na ₂	323.723 40	O_2^+	149.701 13
Al	-241.930 94	Si ₂	- 577.983 05	P2+	-681.431 60
Si	-288.932 72	P_2	681.818 66	S_2^+	-795.122 17
Р	-340.817 34	\mathbf{S}_{2}	-795.461 60	Cl_2^+	-919.014 52
S	-397.653 26	Cl ₂	-919.437 63	ClF ⁺	558.937 44
Cl	-459.674 63	NaCl	-621.678 57	SC ⁺	-435.290 54
LiH	-8.022 63	SiO	364.218 37	C	-37.826 56
BeH	- 15.195 15	CS	-435.710 79	O '	-75.027 08
CH	-38.412 79	SO	-472.825 05	F	99.749 39
$CH_2(^3B_1)$	- 39.069 02	C10	534.751 71	Si ⁻	
$CH_2(^{1}A_1)$	- 39.058 80	ClF		P-	340.840 22
CH	- 39,745 27	Si₂H∠	- 581.668 27	S	- 397.727 13
CH.	-40.411 13	CH ₂ Cl	-499.551 78	C1-	-459.807 13
NH	-55,141 78	CH ₂ SH	-438,147 30	CH-	-38,452 70
NH.	-55.788 73	HOCI	-535.404 32	CH-	- 39.091 91
NH.	- 56.458 24	SO ₂	- 548.015 79	CH ₂	- 39,744 74
OH	-75 643 07	Li ⁺	-7.235 84	NH ⁻	-55.148.54
OH.	-76.330.63	Be ⁺	- 14.276.39	NH-	-55.811.66
FH	-100.348 02	B+	-24.301 30	OH ⁻	-75.702 15
SiH	-289 545 63	$\tilde{\mathbf{C}}^+$	-37.374.01	SiH-	-289.588 49
$SiH_{2}(^{1}A_{1})$	-290.167 78	N ⁺	-53,986 19	SiH_	-290.203 52
$SiH_{2}(^{3}B_{1})$	-290.130.14	0+	-74.484 77	SiH ₂	-290.825 56
SiH.		с +	-98,993,66	PH-	- 341,462,58
SiH.	-291 419 39	Nat	-161.664.29	PH-	- 342.094 27
PH	-341 427 50	Mo+	- 199 364 08	HS ⁻	- 398.370.57
PH.	- 342.048.56	A1+	-241.71350	0	-150.157.84
PH.	-342.678.83	Si ⁺	-288.635.66	NO ⁻	-129.732.01
SH	- 398.285 77	р+	-340.433 98	CN ⁻	-92.725 85
SH.	398.929.91	ŝ+	-397.279.18	PO ⁻	-416.053 70
CIH	-460.338 66	- Cl+	-459.202.58	PO	-416.020 41
Lia	-14.906 19	CH ⁺	-39.945 17	S-	-795.522.00
LiF	-107.281.31	NH ⁺	-56.084 33		-919.525 38
C.H.	-77,185 91	OH ⁺	-75.166 95	NH ⁺	-56.781 72
C.H.	-78.416.09	OH.+	-75.868 10	OH ⁺	-76.592.09
C ₂ H ₄	-79,631 11	FH ⁴	-99.758 90	C ₂ H ⁺	-77.430 80
CN	-92 581 97	SiH+	-291 014 54	SiH ⁺	-291.663.39
HCN	-93 284 55	PH+		PH ⁺	- 342 975 90
CO	-113.177.73	PH ⁺	-341.691.86	SH ⁺	- 399,197 49
HCO	-113.698 12	PH ⁺	-342.316 25	CIH ⁺	-460.550 83
		3		2	

A=4.81 mhartree. We note that the calculation of the G2(MP2) energy requires only two calculations, QCISD(T)/6-311G(d,p) and MP2/6-311+G(3df,2p).

In G2(MP3) theory the basis set extension corrections in steps (1) and (2) are replaced by corrections obtained at the MP3 level,

$$\Delta_{MP3}(+) = E[MP3/6-311+G(d,p)] - E[MP3/6-311G(d,p)], \qquad (4)$$
$$\Delta_{MP3}(2df) = E[MP3/6-311G(2df,p)]$$

$$-E[MP3/6-311G(d,p)].$$
 (5)

The total G2(MP3) energy is thus given by

$$E_0 = [QCISD(T)/6-311G(d_p)] + \Delta_{MP3}(+) + \Delta_{MP3}(2df) + \Delta + HLC + E(ZPE).$$
(6)

The value of A used in the HLC for G2(MP3) theory was chosen in a similar way as for G2(MP3) theory. For G2(MP3) theory A=5.13 mhartree. The G2(MP3) level requires four calculations, QCISD(T)/6-311G(d,p), MP3/6-311+G(d,p), MP3/6-311G(2df,p), and MP2(6-311+G(3df,2p).

J. Chem. Phys., Vol. 98, No. 2, 15 January 1993

1295

Downloaded 23 May 2002 to 163.28.96.10. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

TABLE III. G2(MP2) dissociation energies, ionization energies, and electron affinities (in kcal/mol). Values in parentheses are the difference between the G2(MP2) and experimental energies [expt -G2(MP2)].

	Species		Species		Species	
Dissociation	LiH	56.2(-0.2)	SH ₂	173.9(-0.7)	CO ₂	386.1(-4.2)
energies	BeH	44.7(2.2)	ClH	103.5(-1.3)	Na ₂	19.6(-3.0)
	CH	80.2(-0.3)	Li ₂	26.3(-2.3)	Si ₂	74.1(-0.1)
	$CH_2({}^3B_1)$	178.2(1.4)	LiF	137.9(-0.3)	P ₂	115.0(1.1)
	$CH_2({}^1A_1)$	171.6(-1.0)	HCCH	386.7(2.2)	S ₂	99.3(1.4)
	CH_3	288.7(0.5)	C_2H_4	531.2(0.7)	Cl_2	57.9(-0.7)
	CH_4	392.7(-0.2)	C_2H_6	665.9(0.4)	NaCl	99.2(-1.7)
	NH	77.6(1.4)	CN	175.8(0.8)	SiO	191.6(-1.1)
	NH_2	169.9(0.1)	HCN	302.6(-0.8)	SC	172.4(-2.9)
	NH_3	276.6(0.1)	CO	259.0(-2.8)	SO	121.5(2.0)
	OH	101.8(-0.5)	HCO	272.0(-1.7)	ClO	62.0(1.3)
	OH ₂	220.5(-1.2)	H ₂ CO	359.9(-2.7)	ClF	61.8(-1.5)
	FH	136.9(-1.7)	H ₃ COH	482.7(-1.9)	Si_2H_6	502.6(-2.5)
	$\operatorname{SiH}_2({}^1A_1)$	147.0(-2.6)	N_2	223.9(1.2)	CH ₃ Cl	372.6(-1.6)
	$SiH_2(^3B_1)$	123.6(-0.2)	H_4N_2	404.8(0.6)	CH ₃ SH	445.7(-0.6)
	SiH_3	213.4(0.6)	NO	151.4(-1.3)	HOCI	158.3(-2.0)
	SiH_4	304.7(-1.9)	O ₂	115.9(2.1)	SO ₂	252.7(1.3)
	PH_2	144.4(0.3)	HOOH	253.5(-1.2)		
	\mathbf{PH}_{3}	226.1(1.3)	F_2	37.6(-0.7)		
Ionization	Li	123.2(1.1)	Cl	294.9(4.2)	ClH	292.9(1.1)
energies	Be	217.8(-2.9)	CH_4	292.2(-1.2)	C_2H_2	263.3(-0.4)
	В	188.7(2.7)	NH_3	235.1(-0.3)	C_2H_4	244.0(-1.6)
	С	256.9(2.7)	OH	298.7(1.3)	CO	323.2(-0.1)
	N	332.8(2.5)	OH_2	291.3(-0.3)	$N_2 2 \Sigma_g^+$	358.4(0.9)
	0	310.5(3.3)	FH	371.0(-1.1)	$N_2 {}^2\Pi_u$	383.8(1.3)
	F	400.3(1.4)	SiH_4	253.3(0.4)	O ₂	280.1(-1.8)
	Na	114.1(4.4)	PH	231.4(2.7)	P_2	242.1(0.7)
	Mg	177.0(-0.7)	PH ₂	223.1(3.3)	S ₂	212.9(2.9)
	Al	135.6(2.4)	PH_3	226.9(0.7)	Cl ₂	264.9(0.3)
	Si	185.2(2.7)	SH	236.4(2.8)	ClF	290.5(1.4)
	Р	239.5(2.4)	$SH_2(^2B_1)$	239.8(1.7)	SC	263.3(-2.0)
	S	232.6(6.3)	$SH_2(A_1)$	293.9(0.8)		
Electron	С	25.6(3.5)	CH ₃	1.0(0.9)	HS	53.3(0.1)
affinities	0	31.1(2.6)	NH	5.9(2.9)	O ₂	9.7(0.5)
	F	79.5(-1.1)	NH_2	18.4(-1.3)	NO	-3.0(3.5)
	Si	30.0(2.0)	OH	43.3(-1.1)	CN	91.3(-3.3)
	Р	12.7(4.5)	SiH	26.0(3.4)	PO	22.5(2.7)
	S	45.6(2.3)	SiH ₂	21.8(4.1)	S ₂	37.9(0.5)
	Cl	83.5(-0.1)	SiH ₃	31.9(1.3)	Cl_2	53.7(1.4)
	CH	24.9(3.7)	PH	21.0(2.0)		
	CH ₂	14.9(0.1)	PH ₂	28.3(0.8)		
Proton	NH ₃	202.5(0.0)	SiH_4	153.5(0.5)	CIH	133.6(0.0)
affinities	OH ₂	163.1(2.0)	PH_3	186.8(0.3)		
	C_2H_2	153.7(-1.4)	SH_2	168.5(0.3)		

III. RESULTS AND DISCUSSION

The G2(MP2) and G2(MP3) total energies obtained from Eqs. (3) and (6), respectively, are given in Tables I and II. Tables III and IV contain atomization energies, ionization energies, electron affinities, and proton affinities derived from the energies in Tables I and II. The average absolute deviation of the G2(MP2) energies from experiment of the set of 125 species in Table III is 1.58 kcal/mol compared to the corresponding average absolute deviation of the G2 energies of 1.21 kcal/mol.¹ The average absolute deviation of the G2(MP2) energies from the G2 energies for the set of 125 species in Tables II is 0.74 kcal/mol. Thus, the two theories agree more closely with each other than either does with experiment.

G2(MP2) theory does best for dissociation energies and proton affinities. Of the 55 dissociation energies in Table III the average absolute deviation from experiment is 1.31 kcal/mol compared to an average absolute deviation for G2 theory of 1.16 kcal/mol. For the most part the molecules which deviated by more than 2 kcal/mol from experiment are similar in G2 and G2(MP2) theory; these include SiH₂, O₂, H₂CO, Na₂, CO₂, Si₂H₆. G2 theory is also in error by more than 2 kcal/mol for S₂, SO, CIO, and SO₂ while G2(MP2) theory is in error by more than 2

TABLE IV. G2(MP3) dissociation energies, ionization energies, and electron affinities (in kcal/mol). Values in parentheses are the difference between the G2(MP3) and experimental energies [expt-G2 (MP3)].

	Species		Species		Species	
Dissociation	LiH	56.7(-0.7)	SH ₂	173.6(-0.4)	CO ₂	385.3(-3.4)
energies	BeH	45.3(1.6)	ClH	102.9(-0.7)	Na_2	19.5(-2.9)
	CH	80.6(-0.7)	Li ₂	26.2(-2.2)	Si ₂	73.8(0.2)
	$CH_2(^3B_1)$	178.6(1.0)	LiF	136.3(1.3)	P_2	115.4(0.7)
	$\operatorname{CH}_2({}^1A_1)$	172.2(-1.6)	HCCH	387.3(1.6)	S_2	97.3(3.4)
	CH_3	289.2(0.0)	C_2H_4	531.8(0.1)	Cl_2	55.5(1.7)
	CH_4	393.3(-0.8)	C_2H_6	666.7(-0.4)	NaCl	99.0(-1.5)
	NH	78.0(1.0)	CN	175.8(0.8)	SiO	191.0(-0.5)
	NH ₂	170.2(-0.2)	HCN	302.9(-1.1)	SC	171.4(-1.9)
	NH3	276.6(0.1)	CO	258.6(-2.4)	SO	119.5(4.0)
	OH	101.5(-0.2)	HCO	271.4(-1.1)	ClO	60.1(3.2)
	OH_2	219.2(0.1)	H_2CO	359.2(-2.0)	ClF	59.3(1.0)
	FH	135.6(-0.4)	H ₃ COH	481.8(-1.0)	Si ₂ H ₆	503.8(-3.7)
	$SiH_2(^1A_1)$	147.5(-3.1)	N ₂	224.1(1.0)	CH ₃ Cl	372.0(-1.0)
	$\operatorname{SiH}_{2}({}^{3}B_{1})$	123.9(-0.5)	$\tilde{\mathbf{H}_{A}}\mathbf{N}_{2}$	404.2(1.2)	CH ₂ SH	445.3(-0.2)
	SiH	213.8(0.2)	NO	150.5(-0.4)	HOCI	155.9(0.4)
	SiH	305.4(-2.6)	O ₂	115.2(2.8)	SO ₂	250.9(3.1)
	PH ₂	145.1(-0.4)	ноон	251.2(1.1)	2	
	PH ₃	226.8(0.6)	F ₂	36.0(0.9)		
Ionization	Li	123.2(1.1)	Cl	296.2(2.9)	CIH	293.3(0.7)
energies	Be	217.4(-2.5)	CH_4	292.4(-1.4)	C_2H_2	263.3(-0.4)
	В	189.0(2.4)	NH3	234.6(0.1)	C_2H_4	243.7(-1.4)
	С	257.5(2.2)	OH	298.8(1.2)	CO	323.2(-0.3)
	Ν	333.4(1.9)	OH ₂	290.2(0.8)	$N_2^2 \Sigma_a^+$	358.1(1.2)
	0	311.6(2.3)	FH	369.7(0.2)	$N_2 \ {}^2\Pi_u$	383.9(1.2)
	F	400.5(1.2)	SiH ₄	254.0(-0.4)	O ₂	279.3(-1.0)
	Na	114.1(4.4)	PH	232.3(1.8)	\mathbf{P}_2	242.9(-0.1)
	Mg	176.7(-0.4)	PH_2	223.8(2.6)	S_2	213.0(2.8)
	Al	136.4(1.5)	PH_3	227.5(0.1)	Cl_2	265.5(-0.3)
	Si	186.4(1.5)	SH	237.8(1.4)	CIF	290.9(1.0)
	Р	240.6(1.3)	$SH_2(^2B_1)$	240.5(1.0)	SC	263.7(-2.4)
	S	234.7(4.2)	$\operatorname{SH}_2({}^2A_1)$	294.2(0.5)		
Electron	С	26.5(2.5)	CH3	-0.3(2.2)	HS	53.2(0.1)
affinities	0	28.7(5.0)	NH	4.2(4.5)	$O_{2'}$	7.3(2.8)
	F	73.7(4.7)	NH_2	14.4(2.7)	NO	-4.1(4.6)
	Si	31.0(1.0)	OH	37.1(5.1)	CN	90.3(-2.2)
	Р	14.4(2.8)	SiH	26.9(2.6)	PO	20.9(4.2)
	S	46.4(1.5)	SiH ₂	22.4(3.5)	S_2	37.9(0.4)
	Cl	83.1(0.2)	SiH_3	32.7(0.5)	Cl ₂	55.1(0.1)
	CH	25.0(3.6)	PH	22.0(1.0)		
	CH ₂	14.4(0.6)	PH ₂	28.7(0.4)		
Proton	NH_3	203.0(-0.5)	SiH ₄	153.1(0.9)	ClH	133.1(0.5)
affinities	OH	164.1(1.0)	PH ₃	186.4(0.7)		
	C ₂ H ₂	153.7(-1.4)	SH ₂	167.9(0.9)		

kcal/mol for Li₂, CO, SC, and BeH. Of these problem molecules G2 theory deviates by more than 3 kcal/mol for two of them (SO₂ and S₂) while G2(MP2) theory deviates by more than 3 kcal/mol for only one (CO₂). G2(MP2) theory is comparable to G2 theory on the seven proton affinities examined with an average absolute deviation of 0.65 kcal/mol compared to 1.0 for G2 theory. G2(MP2) theory does more poorly on ionization energies and electron affinities than G2 theory. This is largely due to the results for the atoms where apparently the higher levels of correlation are more important in obtaining the energy differences. Aside from the atoms, G2(MP2) theory is off by by more than 3 kcal/mol in the electron affinities of SiH, SiH_2 , CN, and NO and the ionization energy of PH_2 .

The average absolute deviation of the G2(MP3) energies from experiment of the set of 125 species in Table IV is 1.52 kcal/mol and the average absolute deviation of the G2(MP3) energies from the G2 energies in Tables IV is 0.62 kcal/mol. G2(MP3) theory also does best for dissociation energies and proton affinities. Of the 55 dissociation energies in Table IV the average absolute deviation is 1.29 kcal/mol. G2(MP3) theory is off by more than 2 kcal/mol for 12 molecules; these include SiH₂, SiH₄, Li₂, CO, O₂, Na₂, CO₂, S₂, SO, ClO, SO₂, and Si₂H₆. Of these problem molecules G2(MP3) theory deviates by more than 3 kcal/ mol for seven of them (SO₂, Si₂H₆, ClO, SO, S₂, CO₂,

J. Chem. Phys., Vol. 98, No. 2, 15 January 1993

Downloaded 23 May 2002 to 163.28.96.10. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp

SiH₂). G2(MP3) theory has an average absolute deviation of 0.84 kcal/mol for proton affinities. G2(MP3) theory also does more poorly on ionization energies and electron affinities than G2 theory, especially the atoms. Aside from the atoms G2(MP3) theory is off by more than 3 kcal/mol in the electron affinities of NH, OH, SiH₂, NO, and PO and none of the ionization energies.

Both G2(MP2) and G2(MP3) theories eliminate the MP4/6-311G(2df,p) calculation which is the largest calculation in G2 theory. Use of direct calculations makes the MP2/6-311+G(3df,2p) calculation in step (3) feasible. In G2(MP2) and G2(MP3) theories the limiting calculation is now the QCISD(T)/6-311G(d,p) calculation.

IV. CONCLUSIONS

The two variations of the (G2) theory presented here, G2(MP2) and G2(MP3), perform reasonably well when compared with G2 theory. The average absolute deviations with experiment of 1.58 and 1.52 kcal/mol, respectively (compared to 1.21 kcal/mol for G2 theory) suggest that they should be accurate to ± 3 kcal. The absence of the MP4/6-311G(2df,p) calculation in the two new methods provides significant savings in computational time and disk storage. Thus, the G2(MP2) and G2(MP3) methods can handle larger systems than are possible with G2 theory. G2(MP3) appears to have little advantage over

G2(MP2), so the latter is preferable for studies of large molecules for which G2 theory is not feasible.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under Contract No. W-31-109-ENG-38, and the National Science Foundation Grant No. CHEM-89-18623.

- ¹L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople J. Chem. Phys. 94, 7221 (1991).
- ²L. A. Curtiss, J. E. Carpenter, K Ragavachari, and J. A. Pople, J. Chem. Phys. **96**, 9030 (1992).
- ³L. A. Curtiss, K. Raghavachari, P. W. Deutsch, and J. A. Pople, J. Chem. Phys. **95**, 2433 (1991); J. A. Pople and L. A. Curtiss, *ibid.* **95**, 4385 (1991); L. A. Curtiss, D. Kock, and J. A. Pople, *ibid.* **95**, 4040 (1991); L. A. Curtiss and J. A. Pople, *ibid.* **95**, 7962 (1991); B. J. Smith, J. A. Pople, L. A. Curtiss, and L. Radom, Aust. J. Chem. **45**, 285 (1992); L. A. Curtiss, H. Brand, J. B. Nicholas, and L. E. Iton, Chem. Phys. Lett. **184**, 215 (1991); N. L. Ma, B. J. Smith, J. A. Pople, and L. Radom, J. Am. Chem. Soc. **113**, 7903 (1991).
- ⁴J. A. Pople, M. Head-Gordon, and K. Raghavachari, J. Chem. Phys. 87, 5968 (1987).
- ⁵J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari, and L. A. Curtiss, J. Chem. Phys. **90**, 5622 (1989).
- ⁶L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, and J. A. Pople, J. Chem. Phys. **93**, 2537 (1990).